21 research outputs found

    The PIOLab: Building global physical input-output tables in a virtual laboratory

    Get PDF
    Informed environmental-economic policy decisions require a solid understanding of the economy’s biophysical basis. Global physical input-output tables ( gPIOTs) collate a vast array ofinformation on the world economy’s physical structure and its interdependence with the environment. However, building gPIOTs requires dealing with mismatched and incompleteprimary data with high uncertainties, which makes it a time-consuming and labor-intensive endeavor. We address this challenge by introducing the PIOLab: A virtual laboratory for building gPIOTs. It represents the newest branch of the Industrial Ecology virtual laboratory (IELab) concept, a cloud-computing platform and collaborative research environment through which participants can use each other’s resources to assemble individual input-output tables targeting specific research questions. To overcome the lack of primary data, the PIOLab builds extensively upon secondary data derived from a variety of models commonly used in Industrial Ecology. We use the case of global iron-steel supply chains to describe the architecture of the PIOLab and highlight its analytical capabilities. A major strength of the gPIOT is its ability to provide mass-balanced indicators on both apparent/direct and embodied/indirect flows, for regions and disaggregated economic sectors. We present the first gPIOTs for 10 years (2008-2017), covering32 regions, 30 processes and 39 types of iron/steel flows. Diagnostic tests of the data reconciliation show a good level of adherence between raw data and the values realized in the gPIOT. We conclude with elaborating on how the PIOLab will be extended to cover other materials and energyflows.Series: Ecological Economic Paper

    MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints

    Get PDF
    Producción CientíficaA diversity of integrated assessment models (IAMs) coexists due to the different approaches developed to deal with the complex interactions, high uncertainties and knowledge gaps within the environment and human societies. This paper describes the open-source MEDEAS modeling framework, which has been developed with the aim of informing decision-making to achieve the transition to sustainable energy systems with a focus on biophysical, economic, social and technological restrictions and tackling some of the limitations identified in the current IAMs. MEDEAS models include the following relevant characteristics: representation of biophysical constraints to energy availability; modeling of the mineral and energy investments for the energy transition, allowing a dynamic assessment of the potential mineral scarcities and computation of the net energy available to society; consistent representation of climate change damages with climate assessments by natural scientists; integration of detailed sectoral economic structure (input–output analysis) within a system dynamics approach; energy shifts driven by physical scarcity; and a rich set of socioeconomic and environmental impact indicators. The potentialities and novel insights that this framework brings are illustrated by the simulation of four variants of current trends with the MEDEAS-world model: the consideration of alternative plausible assumptions and methods, combined with the feedback-rich structure of the model, reveal dynamics and implications absent in classical models. Our results suggest that the continuation of current trends will drive significant biophysical scarcities and impacts which will most likely derive in regionalization (priority to security concerns and trade barriers), conflict, and ultimately, a severe global crisis which may lead to the collapse of our modern civilization. Despite depicting a much more worrying future than conventional projections of current trends, we however believe it is a more realistic counterfactual scenario that will allow the design of improved alternative sustainable pathways in future work.Ministerio de Economía, Industria y Competitividad (Project CO2017-85110-R)Ministerio de Economía, Industria y Competitividad (Project JCI-2016–28833)MEDEAS project, funded by the European Union’s Horizon2020 research and innovation programme under grant agree-ment no. 691287.LOCOMOTION project, funded by the EuropeanUnion’s Horizon 2020 research and innovation programmeunder grant agreement no. 82110

    Measurement of the Mass of the Z-Boson and the Energy Calibration of Lep

    Get PDF
    Contains fulltext : 26847___.PDF (publisher's version ) (Open Access

    MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints

    No full text

    Anhang

    No full text
    corecore