246 research outputs found

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes

    Get PDF
    Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Altered expression of topoisomerase IIα contributes to cross-resistant to etoposide K562/MX2 cell line by aberrant methylation

    Get PDF
    KRN 8602 (MX2) is a novel morpholino anthracycline derivative having the chemical structure 3′-deamino-3′-morpholino-13-deoxo-10-hydroxycarminomycin hydrochloride. To investigate the mechanisms of resistance to MX2, we established an MX2-resistant phenotype (K562/MX2) of the human myelogeneous leukaemia cell line (K562/P), by continuously exposing a suspension culture to increasing concentrations of MX2. K562/MX2 cells were more resistant to MX2 than the parent cells, and also showed cross-resistance to etoposide and doxorubicin. Topoisomerase (Topo) IIα protein levels in K562/MX2 cells were lower of those in K562/P cells on immunoblot analysis and decreased expression of Topo IIα mRNA was seen in K562/MX2 cells. Topoisomerase II catalytic activity was also reduced in the nuclear extracts from K562/MX2 cells when compared with K562/P cells. Aberrant methylated CpG of Topo IIα gene was observed in K562/MX2 cells when compared with the parent line on methylation-specific restriction enzyme analysis. To overcome the drug resistance to MX2 and etoposide, we investigated treatment with 5-Aza-2′-deoxycytidine (5AZ), which is a demethylating agent, in K562/MX2 cells. 5-Aza-2′-deoxycytidine treatment increased Topo IIα mRNA expression in K562/MX2 cells, but not in K562/P cells, and increased the cytotoxicity of MX2 and etoposide. Methylated CpG was decreased in K562/MX2 cells after 5AZ treatment. We concluded that the mechanism of drug resistance to MX2 and etoposide in K562/MX2 cells might be the combination of decreased expression of Topo IIα gene and increased methylation, and that 5AZ could prove to be a novel treatment for etoposide-resistant cell lines, such as K562/MX2

    Utilization of multiparametric prostate magnetic resonance imaging in clinical practice and focal therapy: report from a Delphi consensus project

    Get PDF
    To codify the use of multiparametric magnetic resonance imaging (mpMRI) for the interrogation of prostate neoplasia (PCa) in clinical practice and focal therapy (FT). An international collaborative consensus project was undertaken using the Delphi method among experts in the field of PCa. An online questionnaire was presented in three consecutive rounds and modified each round based on the comments provided by the experts. Subsequently, a face-to-face meeting was held to discuss and finalize the consensus results. mpMRI should be performed in patients with prior negative biopsies if clinical suspicion remains, but not instead of the PSA test, nor as a stand-alone diagnostic tool or mpMRI-targeted biopsies only. It is not recommended to use a 1.5 Tesla MRI scanner without an endorectal or pelvic phased-array coil. mpMRI should be performed following standard biopsy-based PCa diagnosis in both the planning and follow-up of FT. If a lesion is seen, MRI-TRUS fusion biopsies should be performed for FT planning. Systematic biopsies are still required for FT planning in biopsy-naïve patients and for patients with residual PCa after FT. Standard repeat biopsies should be taken during the follow-up of FT. The final decision to perform FT should be based on histopathology. However, these consensus statements may differ for expert centers versus non-expert centers. The mpMRI is an important tool for characterizing and targeting PCa in clinical practice and FT. Standardization of acquisition and reading should be the main priority to guarantee consistent mpMRI quality throughout the urological communit

    Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis:3. Untargeted metabolomics

    Get PDF
    Intramammary infection leading to bovine mastitis is the leading disease problem affecting dairy cows and has marked effects on the milk produced by infected udder quarters. An experimental model of Streptococcus uberis mastitis has previously been investigated for clinical, immunological and pathophysiological alteration in milk, and has been the subject of peptidomic and quantitative proteomic investigation. The same sample set has now been investigated with a metabolomics approach using liquid chromatography and mass spectrometry. The analysis revealed over 3000 chromatographic peaks, of which 690 were putatively annotated with a metabolite. Hierarchical clustering analysis and principal component analysis demonstrated that metabolite changes due to S. uberis infection were maximal at 81 hours post challenge with metabolites in the milk from the resolution phase at 312 hours post challenge being closest to the pre-challenge samples. Metabolic pathway analysis revealed that the majority of the metabolites mapped to carbohydrate and nucleotide metabolism show a decreasing trend in concentration up to 81 hours post-challenge whereas an increasing trend was found in lipid metabolites and di-, tri- and tetra-peptides up to the same time point. The increase in these peptides coincides with an increase in larger peptides found in the previous peptidomic analysis and is likely to be due to protease degradation of milk proteins. Components of bile acid metabolism, linked to the FXR pathway regulating inflammation, were also increased. Metabolomic analysis of the response in milk during mastitis provides an essential component to the full understanding of the mammary gland’s response to infection

    Antenatal Workup of Early Megacystis and Selection of Candidates for Fetal Therapy

    Get PDF
    Objective: To investigate the best criteria for discriminating fetuses with isolated posterior urethral valves from those theoretically not eligible for fetal treatment because of complex megacystis, high chance of spontaneous resolution, and urethral atresia. Methods: A retrospective national study was conducted in fetuses with megacystis detected before 17 weeks’ gestation (early megacystis). Results: In total, 142 cases with fetal megacystis were included in the study: 52 with lower urinary tract obstruction, 29 with normal micturition at birth, and 61 with miscellaneous syndromal associations, chromosomal and multiple structural abnormalities (complex megacystis). Only a nuchal translucency > 95th centile, and not a longitudinal bladder diameter ≤15 mm (p = 0.24), significantly increased the risk of complex megacystis (p 12 mm, and without ultrasound evidence of umbilical cord cysts

    Fetal megacystis: a lot more than LUTO

    Get PDF
    ABSTRACT Objective Fetal megacystis presents a challenge in terms of counseling and management because of its varied etiology and evolution. The aim of this study was to present a comprehensive overview of the underlying etiologies and structural anomalies associated with fetal megacystis. Methods This was a retrospective multicenter study of cases referred to the fetal medicine unit of one of the eight academic hospitals in The Netherlands with a diagnosis of fetal megacystis. For each case, data on and measurements of fetal urinary tract and associated structural anomalies were collected. All available postmortem examinations and postnatal investigations were reviewed in order to establish the final diagnosis. In the first trimester, fetal megacystis was defined as longitudinal bladder diameter (LBD) ≥ 7 mm, and in the second and third trimesters as an enlarged bladder failing to empty during an extended ultrasound examination lasting at least 40 min. Results Of the 541 pregnancies with fetal megacystis, it was isolated (or solely accompanied by other signs of lower urinary tract obstruction (LUTO)) in 360 (67%) cases and associated with other abnormal ultrasound findings in 181 (33%) cases. The most common associated ultrasound anomaly was an increased nuchal translucency thickness (22%), followed by single umbilical artery (10%) and cardiac defect (10%). A final diagnosis was established in 418 cases, including 222 (53%) cases with isolated LUTO and 60 (14%) infants with normal micturition or minor isolated urological anomalies. In the remaining 136 (33%) cases, concomitant developmental or chromosomal abnormality or genetic syndrome was diagnosed. Overall, 40 chromosomal abnormalities were diagnosed, including trisomy 18 (n = 24), trisomy 21 (n = 5), Turner syndrome (n = 5), trisomy 13 (n = 3) and 22q11 deletion (n = 3). Thirty-two cases presented with anorectal malformations involving the anus, rectum and urogenital tract. In cases with confirmed urethral and anal atresia, megacystis occurred early in pregnancy and the bladder appeared severely distended (the LBD (in mm) was equal to or greater than twice the gestational age (in weeks)). Fetal macrosomia was detected in six cases and an overgrowth syndrome was detected in four cases, comprising two infants with Beckwith–Wiedemann syndrome and two with Sotos syndrome. Megacystis-microcolon-intestinal hypoperistalsis syndrome was diagnosed in five (1%) cases and prenatally suspected only in one case. Conclusions Although the main cause of fetal megacystis is LUTO, an enlarged fetal bladder can also be present as a concomitant finding of miscellaneous genetic syndromes, developmental disturbances and chromosomal abnormalities. We provide an overview of the structural anomalies and congenital disorders associated with fetal megacystis and propose a practical guide for the differential diagnosis of genetic syndromes and chromosomal and developmental abnormalities in pregnancies presenting with fetal megacystis, focusing on the morphological examination of the fetus
    • …
    corecore