40 research outputs found

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Diffractive production of #rho#"0(770) mesons in muon-proton interactions at 470 GeV

    No full text
    The diffractive production of #rho#"0(770) mesons in muon-proton interactions is studied in the kinematic region 0.15 GeV"2 < Q"3 < 20 GeV"2 and 20 GeV < #nu# < 420 GeV. The data were obtained in the Fermilab fixed-target experiment E665 with primary muons of 470 GeV energy. Results are presented on the Q"2, x and #nu# dependence of the cross section, on the shape of the #pi#"+#pi#"- mass spectrum, on the slope of the diffraction peak and on the production and decay angular distributions of the #rho#"0(770). The cross section for diffractive production of #rho#"0 by virtual photons on protons depends mainly on Q"2. At fixed Q"2, no significant dependence on x or #nu# is observed. The extrapolation to Q"2 = 0 yields a photoproduction cross section of (10.30 #+-# 0.33) #mu#b. The slope of the t' distribution has a value of (7.0#+-#0.2) GeV"-"2, with a tendency to decrease as Q"2 increases. The production and decay angular distributions of the #rho#"0 depend strongly on Q"2 and are consistent with s-channel helicity conservation. The ratio R #sigma#_L/#sigma#_T deduced from the decay angular distributions rises strongly with Q"2, passing the value of 1 at Q"2 #approx# 2 GeV"2. (orig.)SIGLEAvailable from FIZ Karlsruhe / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Production of charged hadrons by positive muons on deuterium and xenon at 490 GeV

    No full text
    Results on the production of charged hadrons in muon-deuteron and muon-xenon interactions are presented. The data were taken with the E665 spectrometer, which was exposed to the 490 GeV muon beam of the Tevatron at Fermilab. The use of a streamer chamber as vertex detector provides nearly 4#pi# acceptance for charged particles. The #mu#D data are compared with the #mu#Xe data in terms of multiplicity distributions, average multiplicities, forward-backward multiplicity correlations, rapidity and transverse momentum distributions and of two-particle rapidity correlations of charged hadrons. The data cover a range of invariant hadronic masses W from 8 to 30 GeV. (orig.)Available from TIB Hannover: RR 2916(93-17) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Centromere, kinetochore, kinochore, kinetosome, kinosome, kinetomere, kinomere, kinetocentre, kinocentre: history, etymology and intepretation

    No full text

    The Single-Phase ProtoDUNE Technical Design Report

    No full text
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    The Single-Phase ProtoDUNE Technical Design Report

    No full text
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    Long-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration

    No full text
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments. © 2020, The Author(s)
    corecore