81 research outputs found

    "So go downtown": simulating pedestrian movement in town centres

    Get PDF
    Pedestrian movement models have been developed since the 1970s. A review of the literature shows that such models have been developed to explain and predict macro, meso, and micro movement patterns. However, recent developments in modelling techniques, and especially advances in agent-based simulation, open up the possibility of developing integrative and complex models which use existing models as 'building blocks'. In this paper we describe such integrative, modular approach to simulating pedestrian movement behaviour. The STREETS model, developed by using Swarm and GIS, is an agent-based model that focuses on the simulation of the behavioural aspects of pedestrian movement. The modular structure of the simulation is described in detail. This is followed by a discussion of the lessons learned from the development of STREETS, especially the advantages of adopting a modular approach and other aspects of using the agent-based paradigm for modelling

    STREETS: an agent-based pedestrian model.

    Get PDF
    8-11 Septembe

    The DNA60IFX contest

    Get PDF
    We present the full story of Genome Biology's recent DNA60IFX contest, as told by the curators and winner of what turned out to be a memorable and hotly contested bioinformatics challenge. Full solutions, including scripts, are available at http://genomebiology.com/about/update/DNA60_ANSWER

    Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions underlie many important biological processes. Computational prediction methods can nicely complement experimental approaches for identifying protein-protein interactions. Recently, a unique category of sequence-based prediction methods has been put forward - unique in the sense that it does not require homologous protein sequences. This enables it to be universally applicable to all protein sequences unlike many of previous sequence-based prediction methods. If effective as claimed, these new sequence-based, universally applicable prediction methods would have far-reaching utilities in many areas of biology research.</p> <p>Results</p> <p>Upon close survey, I realized that many of these new methods were ill-tested. In addition, newer methods were often published without performance comparison with previous ones. Thus, it is not clear how good they are and whether there are significant performance differences among them. In this study, I have implemented and thoroughly tested 4 different methods on large-scale, non-redundant data sets. It reveals several important points. First, significant performance differences are noted among different methods. Second, data sets typically used for training prediction methods appear significantly biased, limiting the general applicability of prediction methods trained with them. Third, there is still ample room for further developments. In addition, my analysis illustrates the importance of complementary performance measures coupled with right-sized data sets for meaningful benchmark tests.</p> <p>Conclusions</p> <p>The current study reveals the potentials and limits of the new category of sequence-based protein-protein interaction prediction methods, which in turn provides a firm ground for future endeavours in this important area of contemporary bioinformatics.</p

    Is there a common water-activity limit for the three domains of life?

    Get PDF
    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life

    Blütenbiologie und Samenansatz beiVicia villosa

    No full text
    corecore