17 research outputs found

    Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device

    Get PDF
    Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer, McCulloch and Blum’s (1969, 1997) landmark reticular formation model is described and re-evaluated, both in simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to provide effective action selection mechanisms in a robot survival task using either simulated or physical robots. The model’s competence is dependent on the organization of afferents from model sensory systems, and a genetic algorithm search identified a class of afferent configurations which have long survival times. The results support our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors and, with the forebrain basal ganglia, may constitute the integrative, ’centrencephalic’ core of vertebrate brain architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of robot controller to those usually considered in the adaptive behavior literature

    The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project

    Get PDF
    Contains fulltext : 88930.pdf (publisher's version ) (Open Access)BACKGROUND: The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer's disease (AD). Dopamine beta-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and 6294 elderly controls. METHODS: We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We used logistic regression models and synergy factor analysis to examine potential interactions and associations with AD. RESULTS: We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95% confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio = 2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype (rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe and North Spain. CONCLUSIONS: Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is the predominant mechanism of the association we report here

    Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias

    No full text
    The aberrant overexpression of Wilms tumor 1 (WT1) in myeloid leukemia plays an important role in blast cell survival and resistance to chemotherapy. High expression of WT1 is also associated with relapse and shortened disease-free survival in patients. However, the mechanisms by which WT1 expression is regulated in leukemia remain unclear. Here, we report that heat shock protein 90 (Hsp90), which plays a critical role in the folding and maturation of several oncogenic proteins, associates with WT1 protein and stabilizes its expression. Pharmacologic inhibition of Hsp90 resulted in ubiquitination and subsequent proteasome-dependant degradation of WT1. RNAi-mediated silencing of WT1 reduced the survival of leukemia cells and increased the sensitivity of these cells to chemotherapy and Hsp90 inhibition. Furthermore, Hsp90 inhibitors 17-AAG [17-(allylamino)-17-demethoxygeldanamycin] and STA-9090 significantly reduced the growth of myeloid leukemia xenografts in vivo and effectively down-regulated the expression of WT1 and its downstream target proteins, c-Myc and Bcl-2. Collectively, our studies identify WT1 as a novel Hsp90 client and support the crucial role for the WT1–Hsp90 interaction in maintaining leukemia cell survival. These findings have significant implications for developing effective therapies for myeloid leukemias and offer a strategy to inhibit the oncogenic func-tions of WT1 by clinically available Hsp90 inhibitors

    Phenotype correlations among the asymmetry measures.

    No full text
    <p>The correlation estimate is shown in the upper right triangle of the matrix and the p-value based on permutation testing is shown in the lower left triangle of the matrix.</p

    Deformation phenotypes.

    No full text
    <p>During the affine registration process, native space images are skewed (sheared) to ‘correct’ hemispheric asymmetry and align the images to the symmetric template. The magnitude of the skewing is a quantitative measure of hemispheric asymmetry. The arrows in each panel indicate the direction volume is shifted during image registration. The asymmetric distribution of volume in the native space (non-deformed) image is therefore opposite to the direction of the arrows. The skews have been exaggerated to emphasize the otherwise subtle distortions introduced by the registration process. Panel A: A positive skew in the transverse plane corresponds to an anterior shift of voxels in the left hemisphere and a posterior shift of voxels in the right hemisphere during registration to the symmetric template. Panel B: A positive skew in the coronal plane leads to a ventral shift of voxels in the left hemisphere and a dorsal shift of voxels in the right hemisphere during registration to the symmetric template. Panel C shows the distributions of the normalized phenotypes.</p

    Cerebral Widths and Asymmetry Quotient Distributions.

    No full text
    <p>Left panel shows an example of a traverse slice dorsal to the corpus callosum with cerebral widths indicated on the right hemisphere. Right panel shows the distributions of the asymmetry quotients for hemisphere volume and each cerebral width.</p

    Cingulate sulcus asymmetry.

    No full text
    <p>Transverse Slices showing the relative position of the left and right ascending ramus of the cingulate sulcus. The left panel shows an image that was consistently scored as +2, the middle panel shows an image scored as symmetric (score = 0), and the right panel shows an image scored as −2.</p
    corecore