143 research outputs found
Relativistic Hydrodynamic Evolutions with Black Hole Excision
We present a numerical code designed to study astrophysical phenomena
involving dynamical spacetimes containing black holes in the presence of
relativistic hydrodynamic matter. We present evolutions of the collapse of a
fluid star from the onset of collapse to the settling of the resulting black
hole to a final stationary state. In order to evolve stably after the black
hole forms, we excise a region inside the hole before a singularity is
encountered. This excision region is introduced after the appearance of an
apparent horizon, but while a significant amount of matter remains outside the
hole. We test our code by evolving accurately a vacuum Schwarzschild black
hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder
dust collapse, and the collapse of nonrotating and rotating stars. These
systems are tracked reliably for hundreds of M following excision, where M is
the mass of the black hole. We perform these tests both in axisymmetry and in
full 3+1 dimensions. We then apply our code to study the effect of the stellar
spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly
rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in
agreement with previous simulations. When J/M^2>1, the collapsing star forms a
torus which fragments into nonaxisymmetric clumps, capable of generating
appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation
Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible âinflationsâ of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58Ă10-8, Ω0V<6.35Ă10-8, and Ω0S<1.08Ă10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
- âŠ