21 research outputs found

    Sintering of vesiculating pyroclasts

    Get PDF
    Hot volcanic pyroclasts can sinter, vesiculate, and outgas in concert – a combination of processes which remains poorly constrained. And yet this combination of processes can occur coincidently during deposition from pyroclastic density currents, in conduit-filling pyroclastic debris, and in tuffisites. In many of these settings, it is the sintering-driven evolution of permeability that is key to gas transport through the evolving deposit. Here, we experimentally and theoretically investigate the evolution of the permeable networks during sintering of hot fragmental volcanic systems, which are hydrous and oversaturated at the experimental conditions. Firstly, we find that vesiculation results in shutting of the inter-granular porous network as bubble growth drives expansion of the particles into one another, destroying interconnected pores. Secondly, we observe that degassing by diffusion out of the particle edge results in contraction of the vesicular particles, re-opening pore spaces between them. Therefore, we find that vesiculation, and diffusive outgassing compete to determine both the intra-fragment vesicularity and the permeability during sintering. The development of intra-fragment vesicularity directly impacts the inter-fragment pore space and its connectivity, which decreases during vesiculation and subsequently increases during diffusive outgassing, prompting complex, non-linear permeability evolution.The relative dominance of these processes is fragment size dependent; proportionally, fine fragments lose gas at a higher rate than coarser fragments during diffusive outgassing due to larger surface area to volume ratios. As the systems progress, larger fragments retain a higher proportion of gas and so attain greater vesicularities than finer ones – and therefore, the coarse fragmental pyroclasts experience a greater, yet transient, reduction in connected porosity and permeability. We suggest that where vesiculation is sufficient, it can lead to the complete loss of connected porosity and the sealing of permeable pathways much earlier than in a sintering-only system. Our results suggest that classical sintering models must be modified to account for these vesiculation and diffusive degassing processes, and that only a combined vesiculation, sintering, and diffusive outgassing model can resolve the evolution of permeability in hot clastic volcanic systems

    A model for permeability evolution during volcanic welding

    Get PDF
    Volcanic ash and pyroclasts can weld when deposited hot by pyroclastic density currents, in near-vent fall deposits, or in fractures in volcano interiors. Welding progressively decreases the permeability of the particle packs, influencing a range of magmatic and volcanic processes, including magma outgassing, which is an important control on eruption dynamics. Consequently, there is a need for a quantitative model for permeability evolution during welding of ash and pyroclasts under the range of conditions encountered in nature. Here we present in situ experiments in which hydrous, crystal-free, glassy pyroclasts are imaged via x-ray tomography during welding at high temperature. For each 3D dataset acquired, we determine the porosity, Darcian gas permeability, specific surface area, and pore connectivity. We find that all of these quantities decrease as a critical percolation threshold is approached. We develop a constitutive mathematical model for the evolution of permeability in welding volcanic systems based on percolation theory, and validate the model against our experimental data. Importantly, our model accounts for polydispersivity of the grainsize in the particle pack, the pressures acting on the pack, and changes in particle viscosity arising from degassing of dissolved H2O during welding. Our model is theoretically grounded and has no fitting parameters, hence it should be valid across all magma compositions. The model can be used to predict whether a cooling pyroclast pack will have sufficient time to weld and to degas, the scenarios under which a final deposit will retain a permeable network, the timescales over which sealing occurs, and whether a welded deposit will have disequilibrium or equilibrium H2O content. A user-friendly implementation of the model is provided

    Quantifying Microstructural Evolution in Moving Magma

    Get PDF
    Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior

    Sintering of viscous droplets under surface tension

    Get PDF
    We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres

    Requirements on melt-textured Y-Ba-Cu-O for the use in magnetic bearings or electric motors

    No full text
    Melt-textured Y-Ba-Cu-O (YBCO) is prepared in a batch process with reproducible material properties. Functional models of magnetic bearings and electric motors were equipped with this material. From the tests of these models the requirements on further material development can be derived. The quality of a magnetic bearing can be improved by increasing the size of the superconducting domains. The current density should be in the order of 200 - 400 A/mm2. Reluctance motors with output powers up to 38 kW at 77K were constructed. Further improvements can be achieved using large superconducting domains with higher current density.</p

    A general model for welding of ash particles in volcanic systems validated using in situ X-ray tomography

    Get PDF
    Welding occurs during transport and deposition of volcanic particles in diverse settings, including pyroclastic density currents, volcanic conduits, and jet engines. Welding rate influences hazard-relevant processes, and is sensitive to water concentration in the melt. We characterize welding of fragments of crystal-free, water-supersaturated rhyolitic glass at high temperature using in-situ synchrotron-source X-ray tomography. Continuous measurement of evolving porosity and pore-space geometry reveals that porosity decays to a percolation threshold of 1–3 vol.%, at which bubbles become isolated and welding ceases. We develop a new mathematical model for this process that combines sintering and water diffusion, which fits experimental data without requiring empirically-adjusted parameters. A key advance is that the model is valid for systems in which welding is driven by confining pressure, surface tension, or a combination of the two. We use the model to constrain welding timescales in a wide range of volcanic settings. We find that volcanic systems span the regime divide between capillary welding in which surface tension is important, and pressure welding in which confining pressure is important. Our model predicts that welding timescales in nature span seconds to years and that this is dominantly dependent on the particle viscosity or the evolution of this viscosity during particle degassing. We provide user-friendly tools, written in Pythonℱ and in Excel¼, to solve for the evolution of porosity and dissolved water concentration during welding for user-defined initial conditions
    corecore