48 research outputs found

    The horizontal internetwork magnetic field: numerical simulations in comparison to observations with Hinode

    Full text link
    Observations with the Hinode space observatory led to the discovery of predominantly horizontal magnetic fields in the photosphere of the quiet internetwork region. Here we investigate realistic numerical simulations of the surface layers of the Sun with respect to horizontal magnetic fields and compute the corresponding polarimetric response in the Fe I 630 nm line pair. We find a local maximum in the mean strength of the horizontal field component at a height of around 500 km in the photosphere, where it surpasses the vertical component by a factor of 2.0 or 5.6, depending on the initial and boundary conditions. From the synthesized Stokes profiles we derive a mean horizontal field component that is, respectively, 1.6 and 4.3 times stronger than the vertical component. This is a consequence of both the intrinsically stronger flux density of, and the larger area occupied by the horizontal fields. We find that convective overshooting expels horizontal fields to the upper photosphere, making the Poynting flux positive in the photosphere, while this quantity is negative in the convectively unstable layer below it.Comment: 4 pages, 3 figures, minor revisions, esp. concerning top boundary cond., ApJL accepte

    Excitation of Slow-Modes in Network Magnetic Elements Through Magnetic Pumping

    Full text link
    From radiation magnetohydrodynamic simulations of the solar atmosphere we find a new mechanism for the excitation of longitudinal slow modes within magnetic flux concentrations. We find that the convective downdrafts in the immediate surroundings of magnetic elements are responsible for the excitation of slow modes. The coupling between the external downdraft and the plasma motion internal to the flux concentration is mediated by the inertial forces of the downdraft that act on the magnetic flux concentration. These forces, in conjunction with the downward movement, pump the internal atmosphere in the downward direction, which entails a fast downdraft in the photospheric and chromospheric layers of the magnetic element. Subsequent to the transient pumping phase, the atmosphere rebounds, causing a slow mode traveling along the magnetic flux concentration in the upward direction. It develops into a shock wave in chromospheric heights, possibly capable of producing some kind of dynamic fibril. We propose an observational detection of this process.Comment: 5 pages, 4 figures, accepted for publication in ApJ Lette

    Progress in Modeling Very Low Mass Stars, Brown Dwarfs, and Planetary Mass Objects

    Full text link
    We review recent advancements in modeling the stellar to substellar transition. The revised molecular opacities, solar oxygen abundances and cloud models allow to reproduce the photometric and spectroscopic properties of this transition to a degree never achieved before, but problems remain in the important M-L transition characteristic of the effective temperature range of characterizable exoplanets. We discuss of the validity of these classical models. We also present new preliminary global Radiation HydroDynamical M dwarfs simulations.Comment: Submitted to Mem. S. A. It. Supp

    Magnetic Energy Spectra in Active Regions

    Full text link
    Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data from {\it SOHO}/MDI instrument recorded in the high resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs of higher flare productivity. We also report that both the power index, α\alpha, of the energy spectrum, E(k)kαE(k) \sim k^{-\alpha}, and the total spectral energy W=E(k)dkW=\int E(k)dk are comparably correlated with the flare index, AA, of an active region. The correlations are found to be stronger than that found between the flare index and total unsigned flux. The flare index for an AR can be estimated based on measurements of α\alpha and WW as A=10b(αW)cA=10^b (\alpha W)^c, with b=7.92±0.58b=-7.92 \pm 0.58 and c=1.85±0.13c=1.85 \pm 0.13. We found that the regime of the fully-developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display under-developed turbulence with strong magnetic dissipation at all scales.Comment: 14 pages, 4 figure

    Morphology and Dynamics of the Low Solar Chromosphere

    Full text link
    The Interferometric Bidimensional Spectrometer (IBIS) installed at the Dunn Solar Telescope of the NSO/SP is used to investigate the morphology and dynamics of the lower chromosphere and the virtually non-magnetic fluctosphere below. The study addresses in particular the structure of magnetic elements that extend into these layers. We choose different quiet Sun regions in and outside coronal holes. In inter-network regions with no significant magnetic flux contributions above the detection limit of IBIS, we find intensity structures with the characteristics of a shock wave pattern. The magnetic flux elements in the network are long lived and seem to resemble the spatially extended counterparts to the underlying photospheric magnetic elements. We suggest a modification to common methods to derive the line-of-sight magnetic field strength and explain some of the difficulties in deriving the magnetic field vector from observations of the fluctosphere.Comment: accepted by ApJ, 16 pages, 8 figure
    corecore