98 research outputs found

    Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Get PDF
    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment

    Periodic and aperiodic contributions to theta‐beta ratios across adulthood

    Get PDF
    The ratio of fronto-central theta (4–7 Hz) to beta oscillations (13–30 Hz), known as the theta-beta ratio, is negatively correlated with attentional control, reinforcement learning, executive function, and age. Although theta-beta ratios have been found to decrease with age in adolescents and young adults, theta has been found to increase with age in older adults. Moreover, age-related decrease in individual alpha peak frequency and flattening of the 1/f aperiodic component may artifactually inflate the association between theta-beta ratio and age. These factors lead to an incomplete understanding of how theta-beta ratio varies across the lifespan and the extent to which variation is due to a conflation of aperiodic and periodic activity. We conducted a partially preregistered analysis examining the cross-sectional associations between age and resting canonical fronto-central theta-beta ratio, individual alpha peak frequency, and aperiodic component (n = 268; age 36–84, M = 55.8, SD = 11.0). Age was negatively associated with theta-beta ratios, individual peak alpha frequencies, and the aperiodic exponent. The correlation between theta-beta ratios and age remained after controlling for individual peak alpha frequencies, but was nonsignificant when controlling for the aperiodic exponent. Aperiodic exponent fully mediated the relationship between theta-beta ratio and age, although beta remained significantly associated with age after controlling for theta, individual peak alpha, and aperiodic exponent. Results replicate previous observations and show age-related decreases in theta-beta ratios are not due to age-related decrease in individual peak alpha frequencies but primarily explained by flattening of the aperiodic component with age

    Resting EEG periodic and aperiodic components predict cognitive decline over 10 years

    Get PDF
    Measures of intrinsic brain function at rest show promise as predictors of cognitive decline in humans, including EEG metrics such as individual alpha peak frequency (IAPF) and the aperiodic exponent, reflecting the strongest frequency of alpha oscillations and the relative balance of excitatory:inhibitory neural activity, respectively. Both IAPF and the aperiodic exponent decrease with age and have been associated with worse executive function and working memory. However, few studies have jointly examined their associations with cognitive function, and none have examined their association with longitudinal cognitive decline rather than cross-sectional impairment. In a preregistered secondary analysis of data from the longitudinal Midlife in the United States (MIDUS) study, we tested whether IAPF and aperiodic exponent measured at rest predict cognitive function (N = 235; age at EEG recording M = 55.10, SD = 10.71) over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in overall cognitive ability, even after controlling for age, sex, education, and lag between data collection timepoints. Post-hoc tests showed that “mismatched” IAPF and aperiodic exponents (e.g., higher exponent with lower IAPF) predicted greater cognitive decline compared to “matching” IAPF and aperiodic exponents (e.g., higher exponent with higher IAPF; lower IAPF with lower aperiodic exponent). These effects were largely driven by measures of executive function. Our findings provide the first evidence that IAPF and the aperiodic exponent are joint predictors of cognitive decline from midlife into old age and thus may offer a useful clinical tool for predicting cognitive risk in aging

    Purpose in life as a resilience factor for brain health: diffusion MRI findings from the Midlife in the U.S. study

    Get PDF
    IntroductionA greater sense of purpose in life is associated with several health benefits relevant for active aging, but the mechanisms remain unclear. We evaluated if purpose in life was associated with indices of brain health.MethodsWe examined data from the Midlife in the United States (MIDUS) Neuroscience Project. Diffusion weighted magnetic resonance imaging data (n=138; mean age 65.2 years, age range 48-95; 80 females; 37 black, indigenous, and people of color) were used to estimate microstructural indices of brain health such as axonal density, and axonal orientation. The seven-item purpose in life scale was used. Permutation analysis of linear models was used to examine associations between purpose in life scores and the diffusion metrics in white matter and in the bilateral hippocampus, adjusting for age, sex, education, and race.Results and discussionGreater sense of purpose in life was associated with brain microstructural features consistent with better brain health. Positive associations were found in both white matter and the right hippocampus, where multiple convergent associations were detected. The hippocampus is a brain structure involved in learning and memory that is vulnerable to stress but retains the capacity to grow and adapt through old age. Our findings suggest pathways through which an enhanced sense of purpose in life may contribute to better brain health and promote healthy aging. Since purpose in life is known to decline with age, interventions and policy changes that facilitate a greater sense of purpose may extend and improve the brain health of individuals and thus improve public health
    corecore