38 research outputs found

    Lessons and perspectives from the data science industry

    Get PDF

    Use of Optimal Control Models to Predict Treatment Time for Managing Tick-Borne Disease

    Get PDF
    Tick-borne diseases have been on the rise recently, and correspondingly, there is an increased interest in implementing control measures to decrease the risk. Optimal control provides an ideal tool to identify the best method for reducing risk while accounting for the associated costs. Using a previously published model, a variety of frameworks are assessed to identify the key factors influencing mitigation strategies. The level and duration of tick-reducing efforts are key metrics for understanding the successful reduction in tick-borne disease incidence. The results show that the punctuated nature of the tick\u27s life history plays a critical role in reducing risk without the need for a permanent treatment programme. This work suggests that across a variety of optimal control frameworks and objective functionals within a closed environment, similar strategies are created, all suggesting that the tick-borne disease risk can be reduced to near zero without completely eliminating the tick population

    Dynamics of Two Pathogens in a Single Tick Population

    Get PDF
    A mathematical model for a two-pathogen, one-tick, one-host system is presented and explored. The goal of this model is to determine how long an invading pathogen persists within a tick population in which a resident pathogen is already established. The numerical simulations of the model demonstrate the parameter ranges that allow for coexistence of the two pathogens. Sensitivity analysis highlights the importance of vector-borne, tick-to-host, transmission rates on the invasion reproductive number and persistence of the pathogens over time. The model is then applied to a case study based on a reclaimed swampland field site in southeastern Virginia using field and laboratory data. The results pinpoint the thresholds required for persistence of both pathogens in the local tick population. However, the invading pathogen is not predicted to persist beyond three years. Understanding the persistence and coexistence of tick-borne pathogens will allow public health officials increased insight into tick-borne disease dynamics

    No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c

    Get PDF
    Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System (Gillon et al., 2017). Thanks to the recent launch of JWST, possible atmospheric constituents such as carbon dioxide (CO2) are now detectable (Morley et al., 2017, Lincowski et al., 2018}. Recent JWST observations of the innermost planet TRAPPIST-1 b showed that it is most probably a bare rock without any CO2 in its atmosphere (Greene et al., 2023). Here we report the detection of thermal emission from the dayside of TRAPPIST-1 c with the Mid-Infrared Instrument (MIRI) on JWST at 15 micron. We measure a planet-to-star flux ratio of fp/fs = 421 +/- 94 parts per million (ppm) which corresponds to an inferred dayside brightness temperature of 380 +/- 31 K. This high dayside temperature disfavours a thick, CO2-rich atmosphere on the planet. The data rule out cloud-free O2/CO2 mixtures with surface pressures ranging from 10 bar (with 10 ppm CO2) to 0.1 bar (pure CO2). A Venus-analogue atmosphere with sulfuric acid clouds is also disfavoured at 2.6 sigma confidence. Thinner atmospheres or bare-rock surfaces are consistent with our measured planet-to-star flux ratio. The absence of a thick, CO2-rich atmosphere on TRAPPIST-1 c suggests a relatively volatile-poor formation history, with less than 9.5 +7.5 -2.3 Earth oceans of water. If all planets in the system formed in the same way, this would indicate a limited reservoir of volatiles for the potentially habitable planets in the system.Comment: Published in Nature on June 19th. 2023, 10 figures, 4 table

    Association Between Race/Ethnicity and COVID-19 Outcomes in Systemic Lupus Erythematosus Patients From the United States: Data From the COVID-19 Global Rheumatology Alliance

    Get PDF
    OBJECTIVE: To determine the association between race/ethnicity and COVID-19 outcomes in individuals with systemic lupus erythematosus (SLE). METHODS: Individuals with SLE from the US with data entered into the COVID-19 Global Rheumatology Alliance registry between March 24, 2020 and August 27, 2021 were included. Variables included age, sex, race, and ethnicity (White, Black, Hispanic, other), comorbidities, disease activity, pandemic time period, glucocorticoid dose, antimalarials, and immunosuppressive drug use. The ordinal outcome categories were: not hospitalized, hospitalized with no oxygenation, hospitalized with any ventilation or oxygenation, and death. We constructed ordinal logistic regression models evaluating the relationship between race/ethnicity and COVID-19 severity, adjusting for possible confounders. RESULTS: We included 523 patients; 473 (90.4%) were female and the mean ± SD age was 46.6 ± 14.0 years. A total of 358 patients (74.6%) were not hospitalized; 40 patients (8.3%) were hospitalized without oxygen, 64 patients (13.3%) were hospitalized with any oxygenation, and 18 (3.8%) died. In a multivariable model, Black (odds ratio [OR] 2.73 [95% confidence interval (95% CI) 1.36–5.53]) and Hispanic (OR 2.76 [95% CI 1.34–5.69]) individuals had higher odds of more severe outcomes than White individuals. CONCLUSION: Black and Hispanic individuals with SLE experienced more severe COVID-19 outcomes, which is consistent with findings in the US general population. These results likely reflect socioeconomic and health disparities and suggest that more aggressive efforts are needed to prevent and treat infection in this population

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin

    Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization

    No full text
    Researchers using ordinary differential equations to model phenomena face two main challenges among others: implementing the appropriate model and optimizing the parameters of the selected model. The latter often proves difficult or computationally expensive. Here, we implement Particle Swarm Optimization, which draws inspiration from the optimizing behavior of insect swarms in nature, as it is a simple and efficient method for fitting models to data. We demonstrate its efficacy by showing that it outstrips evolutionary computing methods previously used to analyze an epidemic model

    Examination of models for cholera: insights into model comparison methods

    No full text
    This article provides an overview of the Akaike and Bayesian Information Criteria as applied to the setting of deterministic modelling, with the perspective that this may be a useful tool for biomathematics researchers whose primary interests lie in the analysis of compartmental models. We additionally examine a wide range mechanistic and parameter assumptions in the cholera literature through the unifying lens of model selection criteria. Five models for cholera are considered using multiple model selection formulations, and implications for cholera modelling and for model selection criteria are discussed
    corecore