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Tick-borne diseases have been on the rise recently, and correspondingly, there is an increased interest in
implementing control measures to decrease the risk. Optimal control provides an ideal tool to identify
the best method for reducing risk while accounting for the associated costs. Using a previously published
model, a variety of frameworks are assessed to identify the key factors influencing mitigation strategies.
The level and duration of tick-reducing efforts are key metrics for understanding the successful reduction
in tick-borne disease incidence. The results show that the punctuated nature of the tick’s life history plays
a critical role in reducing risk without the need for a permanent treatment programme. This work suggests
that across a variety of optimal control frameworks and objective functionals within a closed environment,
similar strategies are created, all suggesting that the tick-borne disease risk can be reduced to near zero
without completely eliminating the tick population.

Keywords: tick model; ehrlichiosis; optimal control; bang bang control

AMS Subject Classification: 92D30; 49K15; 49J15

1. Introduction

As tick-borne diseases have been found across the USA, there is increased awareness and concern
[2]. According to the US Centers for Disease Control and Prevention, incidences of tick-borne
diseases have risen dramatically in the past decade. In 2006, the most recent year reported, there
were 578 confirmed cases of ehrlichiosis, 19,931 confirmed cases of Lyme disease and 2288 cases
of Rocky Mountain spotted fever (Rickettsia rickettsii) [3]. All of these most common tick-borne
diseases can cause mild to severe health complications and even death in humans and dogs if left
untreated.

Given the risk posed by these diseases to the public, any public park would be remiss to not
respond appropriately to the threats found within park boundaries. In order to hope to contain or
eliminate tick-borne diseases, we must understand the underlying dynamics of the tick popula-
tions themselves [21]. Mathematical models can play an integral role in this critically important
area of research. Combining the dynamics of the tick populations, the host populations and the
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environmental factors that influence those populations is a challenging task that is naturally suited
for mathematical modelling. Mathematical models have been used to study the spread and control
of a variety of diseases starting with Bernoulli’s simple model of smallpox [1]. However, relatively
few tick-borne disease models have been derived in comparison to the number of models for other
vector-borne or directly transmitted diseases.

The mathematical technique of optimal control is an ideal tool to explore strategies for the
reduction of a tick-borne disease in an area where that disease has been found to be endemic.
Optimal control has been used in many epidemiological models to assess the use of interventions
such as vaccination, treatment and isolation [6,11,15,16] and in tick-borne diseases. Optimal
control provides a method for assessing the trade-offs between the cost of treatment and the costs
of the disease. Gaff and Gross [9] developed a mathematical model for ehrlichiosis, and this model
was further expanded to analyse various aspects of the disease [10,12]. Here, we use this model
as the basis for identifying the key factors influencing the predicted optimal control strategy to
reduce the risk of ehrlichiosis and other similar tick-borne diseases.

There are a variety of biological and chemical methods for controlling ticks and tick-borne dis-
ease risk [19]. Examples include the application of chemical insecticides that are highly effective
against ticks (often called acaricides), biocontrol by introduced predators, and the introduction of
biological agents such as fungi or bacteria that attack ticks. The biggest challenge to implementing
these efforts is understanding at what level and for how long a programme must be maintained to
see significant reductions in the risk of disease. From a mathematical modelling perspective, all
of these methods can be represented by an additional death rate for ticks, with additional terms to
account for the specific costs associated with the chosen approaches. We implement this approach
in the model described herein and we focus on returning answers to the questions of ‘how much?’
and ‘how long?’

This article looks at how optimal control can predict the impact of the use any of these tick-
killing interventions on the reduction of tick-borne disease risk. Rather than restricting ourselves
to a single optimal control system, we formulate a set of possible systems. We discuss the existence
of the optimal control system for each problem. Then we explore the implications of the predicted
optimal control solutions using numerical simulations for a variety of scenarios. By comparing
the results from each simulation, we draw our conclusions about the effort required for optimal
results. This analysis will allow us to choose the most appropriate formulation of the optimal
control in future metapopulation optimal control settings.

2. Model equations and analysis

We start from the model of Gaff and Gross [9] to provide our state equations which describe
the interaction of the entire and infected portions of host and tick populations. Below, N and V

represent the size of the entire host and vector populations, while Y and X represent the size of
the infected host and tick populations.

dN

dt
= β

(
K − N

K

)
N − bN, (1)

dV

dt
= β̂V

(
MN − V

MN

)
− (b̂ + δ)V, (2)

dY

dt
= A

(
N − Y

N

)
X − β

NY

K
− (b + ν)Y, (3)

dX

dt
= Â

(
Y

N

)
(V − X) − β̂

V X

MN
− (b̂ + δ)X, (4)
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Table 1. Parameter names and values.

Name Symbol Value

Total number of hosts per m2 N

Total number of ticks per m2 V

Number of infected hosts per m2 Y

Number of infected ticks per m2 X

Initial number of hosts N0 20.0
Initial number of ticks V0 3000.0
Initial number of infected hosts Y0 8.0
Initial number of ticks X0 80.0
Number of months 360
Tick growth rate β̂ 0.75a

Background tick death rate in grass b̂1 0.1b

Background tick death rate in woods b̂1 0.01b

Host carrying capacity in grass K 0.001
Host carrying capacity in woods K 0.002
Infection from ticks to hosts Â 0.07
Infection from hosts to ticks A 0.02
Background host death rate b 0.01
Balance term C0 100.0
Balance term C1 1.0
Balance term C2 10000.0
Balance term C3 10000.0
Host growth rate β 0.2
Maximum ticks per host M 200.0
Maximum treatment δmax Variesc

Host recovery rate ν 0.0

aIf variable, take the above maximum value ∗[0.0 0.0 0.0 0.6 0.8 1.0 0.8 0.4
0.8 0.8 0.6 0.0] for monthly values.
bIf variable, take the above maximum value ∗[0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5
0.0 0.0 0.0 0.5] for monthly values.
cMaximum treatment is given for each scenario in Table 3.

with initial conditions

N(0) = N0, V (0) = V0, Y (0) = Y0, X(0) = X0. (5)

The variables and parameters in the equations above are described in depth in [9] and are given
in Table 1. A brief description of the model follows.

The model given by Equations (1)–(4) describes a system in which hosts and ticks are interacting
with a disease present. For both the host and tick populations, we assume no within-population
structure except for infection status.The disease is only passed from an infected tick to a susceptible
host or from an infected host to a susceptible tick during a blood meal. The ticks do not recover
from the disease, but the hosts may recover at a given rate with no lasting immunity. The time
unit of this model is assumed to be one month, and the spatial unit is assumed to be per m2. All
rates and results are per m2 and per month.

The state equations are well defined only if the host population N remains strictly positive. A
simple phase line analysis assures us that this is the case provided that the host death rate remains
smaller than the host birth rate, which would certainly hold in cases of interest.

2.1. Quadratic control

We first consider a twist on a common form of the objective functional in optimal control. We use
a quadratic term for rate of application of a tick-killing control. However, in recognition of the
use of ticks, especially engorged ticks, as a prey source for other species, we opted not to simply
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eliminate infected ticks as our goal. Rather, our goal is to minimize the cost and disease, while
maximizing the disease-free tick population. Mathematically, the goal is to optimize the function
δ(t) so that the functional given below, J , is minimized.

J (δ) =
∫ T

0

(
C0X − C1V + C2

2
δ2

)
dt (6)

We assume there are practical limitations on the maximum rate at which the tick-killing treatment
may be applied in a given time period and we define the positive constant δmax accordingly. We
define the set � of admissible controls to be all Lebesgue measurable functions which take on
values in the control set U = [0, δmax] a.e. on [0, T ]. We seek an optimal control δ∗ ∈ � such that

J (δ∗) = min
�

J (δ). (7)

2.1.1. Existence of an optimal control

We examine sufficient conditions for the existence of a solution to the quadratic optimal control
problem. Because the question of optimal control is only interesting in the case that disease is
endemic, we note that the assumption of parameter relationships in the case that no tick-killing
treatment are applied

b̂ < β̂ − β̂2(β + v)

AÂM
(8)

corresponds to the case in which the basic reproductive number is greater than 1 [9].

Theorem 2.1 When Equation (8) is satisfied and given a control u ∈ �, the set of solutions to
the initial value problem (1)–(5) is non-empty and bounded on [0, T ].
Proof We refer to Theorem 3.1 by Picard–Lindelöf in Coddington and Levinson [5]. If the
solutions to the state equations are a priori bounded and if the state equations are continuous and
Lipschitz in the state trajectories, then there is a unique solution corresponding to every admissible
control in �.

In the case that no tick-killing treatment is applied, δ ≡ 0, then as shown in [9], using assump-
tion (8), the state trajectories will remain non-negative with non-negative initial conditions and
will have locally asymptotically stable equilibria of the state trajectories

Neq = K

(
1 − b

β

)

Veq = MK

(
1 − b

β

) (
1 − b̂

β̂

)

Yeq = K(b − β)(β̂2[β + ν] + AÂM[b̂ − β̂])
Âβ(MA[β̂ − b̂] + β̂[β + ν])

Xeq = K(b − β)(β̂2[β + ν] + AÂM[b̂ − β̂])
Aββ̂(Â + β̂)

.

On the other hand, if the application of tick-killing treatment is sufficiently large so that the tick
death rate exceeds the growth rate, then of course both tick populations have an equilibrium value
of zero, and the host popoulation N heads to the non-zero equilibrium (1 − b/β)K , with the
diseased host population reaching zero.
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The cases with δ(t) = 0 and δ(t) = δmax > b̂ for all t ∈ [0, T ] form special cases of system (1)–
(5), and the solutions of these special cases provide super- and sub-solutions, respectively, for our
system. Therefore, the state trajectories for our system have a priori lower bounds of 0 and upper
bounds given by either the initial conditions or the equilibrium values given above. Additionally,
it is useful to note that N remains strictly positive.

It is straightforward to show the boundedness of the partial derivatives with respect to the state
trajectories in the state system, which establishes that the system is Lipschitz with respect to the
state variables [4, p. 248]. Thus, there is a unique solution to the state system for every admissible
control. �

We now state and prove an existence result for the quadratic objective functional. We prove this
theorem in a manner that can be easily generalized to the mixed and linear objective functional
cases which is given as follows.

Theorem 2.2 When Equation (8) is satisfied, there exists an optimal control δ∗ and correspond-
ing solution N, V, Y, X to the state initial value problem (1)-(5) that minimizes J (δ) over �.

Proof This proof is a direct application of the conditions for existence of a control minimizing
an objective functional given in Theorem III.4.1 and its corresponding corollary in Fleming and
Rishel [8]. For clarity, we follow the lettering of the text, though several conditions are trivially
or vacuously met. The theorem assumes several bounds that can be established by noting that the
right-hand sides of the state equations are continuously differentiable and bounded, with bounded
partial derivatives (see problem III.7 in [8]). These bounds follow easily from Theorem 2.1.

(a) The set of all solutions to system (1)–(5) with corresponding control functions in � is non-
empty. This was established in Theorem 2.1.

(b) The control set [0, δmax] is closed.
(c) The set of initial conditions to the state system and the range of the state variables at the final

time are both compact.
(d) The control set [0, δmax] is convex, and the state system can be written as a linear function

of the control variable δ with coefficients dependent on time and the state trajectories, and
the integrand in Equation (6) is convex as a function of the control on [0, δmax]. We observe
the linear dependence of the state equations on the control δ and note that convexity follows
from the fact that the integrand L of the objective functional is quadratic in the control. �

We note that there is an additional statement (a) in the Theorem from [8] which does not need
to be established in the case that the range of the controls is compact.

2.1.2. Characterization of optimal control

We apply Pontryagin’s maximum principle [20] to find a characterization of the optimal
control δ(t).

Theorem 2.3 Given an optimal control δ and corresponding solutions N, V, Y, X to the state
system (1)–(5) that minimize the objective functional (6), there exist adjoint variables λ1, λ2, λ3

and λ4 satisfying

dλ1

dt
= λ1

[
β

(
2N − K

K

)
+ b

]
− λ2β̂

V 2

MN2

+ λ3

(
βY

K
− AY

N2
X

)
+ λ4

[
Â

Y (V − X)

N2
− β̂

V X

MN2

]
(9)
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dλ2

dt
= C1 + λ2

[
β̂

(
2V

MN
− 1

)
+ (b̂ + δ)

]
+ λ4

(
β̂X

MN
− ÂY

N

)
(10)

dλ3

dt
= λ3

(
AX

N
+ βN

K
+ b + ν

)
+ λ4

Â(X − V )

N
(11)

dλ4

dt
= −C0 − λ3A

N − Y

N
+ λ4

(
ÂY

N
+ β̂V

MN
+ (b̂ + δ)

)
(12)

with transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = 0. (13)

Furthermore, we may characterize δ by

δ(t) = min

(
δmax, max

(
λ2V (t) + λ4X(t)

C2
, 0

))
. (14)

Proof The result follows from a direct application of a version of Pontryagin’s maximum
principle for bounded controls [17,18,20]. We form the Hamiltonian H :

H = C0X − C1V + C2

2
δ2 + λ1

(
β

(
K − N

K

)
N − bN

)

+ λ2

(
β̂V

(
MN − V

MN

)
− (b̂ + δ)V

)

+ λ3

(
A

(
N − Y

N

)
X − β

NY

K
− (b + ν)Y

)

+ λ4

(
Â

(
Y

N

)
(V − X) − β̂

V X

MN
− (b̂ + δ)X

)
. (15)

As dictated by the maximum principle, the adjoint equations are given by the equations
dλ1/dt = −∂H/∂N , dλ2/dt = −∂H/∂V , dλ3/dt = −∂H/∂Y , dλ4/dt = −∂H/∂X and must
satisfy transversality conditions λi(T ) = 0 for values i = 1 − 4. Finally, the optimality condi-
tions dictate that ∂H/∂δ = 0 for the optimal control δ on the interior of the control set, and this
condition is simplified in Equation (14) with attention to the bounds on the control as given in
the definition of �. Note that as a result of the transversality condition, the optimal application of
tick-killing treatment will be zero at the end time. �

The optimality system is defined as the compilation of the state equations (1)–(4), the initial
conditions (5), the adjoint equations (9)–(12) and the transversality conditions (13), with the opti-
mality equation (14) substituted into the state and adjoint equations. Uniqueness of the optimality
system could be shown for a small time interval following [7,11,14].

2.2. Mixed control: linear and quadratic

Our next functional contains both linear and quadratic terms for the control in an effort to account
for both linear and nonlinear costs in applying the control. Thus, still penalizing for the decline
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of the healthy tick population, we seek to minimize the objective functional

J (δ) =
∫ T

0

(
C0X − C1V + C2δ + C3

2
δ2

)
dt. (16)

The proof of Theorem 2.2 still holds in this case, and we do not repeat the statement or proof in
the interest of space. Likewise, because the Hamiltonian in Equation (15) is only changed with
the addition of the linear term, the adjoint equations and transversality conditions are unchanged
from Theorem 2.3. We do, however, have a new characterization for the optimal control:

δ(t) = min

(
δmax, max

(
λ2V (t) + λ4X(t) − C2

C3
, 0

))
. (17)

2.3. Linear control

When observing our initial results for the problem with quadratic control, we noted that with
many parameter sets the suggested strategy was reminiscent of a bang-bang strategy. Thus, a
direct comparison with a linear objective functional is of interest. As above, we seek to minimize
the number of infected ticks and the intervention needed with the least decline in the total tick
population, and presumably the least potential disruption to the natural system. Thus, we seek to
minimize the objective functional

J (δ) =
∫ T

0
(C0X − C1V + C2δ) dt. (18)

The existence of the optimal control would again follow as in Theorem 2.2, but the characteri-
zation of the control is, of course, quite different from our previous two cases. To characterize an
optimal control in the case that the objective functional has linear dependence on the control, we
reformulate the Hamiltonian

Ĥ = C0X − C1V + C2δ + λ1

(
β

(
K − N

K

)
N − bN

)

+ λ2

(
β̂V

(
MN − V

MN

)
− (b̂ + δ)V

)

+ λ3

(
A

(
N − Y

N

)
X − β

NY

K
− (b + ν)Y

)

+ λ4

(
Â

(
Y

N

)
(V − X) − β̂

V X

MN
− (b̂ + δ)X

)

and note that

∂Ĥ

∂δ
= C2 − λ2V − λ4X.

The switching function is �(t) = ∂Ĥ/∂δ. When �(t) �= 0 we have bang-bang control: if �(t) >

0, then δ(t) = δmax, and if �(t) < 0, then δ(t) = 0. We considered the case of a singular control
which would occur on time internals for which the switching function has a zero value, i.e. for
which �(t) = 0 on a non-empty open interval of time control. Numerically, we find that the case
of a singular does not occur; i.e. our switching function is never zero on a non-empty internal
of time. The full characterization of the singular case is beyond the scope of this paper, and we
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focus instead on a numerical comparison of the control advice suggested should the objective
functional have linear, mixed or quadratic dependence on the control.

2.4. Control without regard to tick survival

How would the optimal control advice change if we did not explicitly penalize for the decline
in the tick population in the objective functionals? This change can be made by simply setting
C1 = 0 in the previous three sections, which causes the similar alteration in the third adjoint
equations. There are no other mathematical consequences of this change.

3. Numerical results and discussion

3.1. Parameter estimation

The parameter estimates are from the original model formulation in [9]. It is of interest to note the
seasonal assumptions for the growth and death cycle. In this work, we will consider constant birth
and death rates at the maximum in addition to the variable rates, and we consider the importance
in understanding the seasonal tick life style in suggesting control strategies. The parameters show
an underlying assumption that the natural tick death rate is 10 times higher in the grass than in
the woods, and this difference will be especially important in future metapopulation approaches
to the optimal control problem.

3.2. Scenarios and results

In Table 2, we list the scenarios for which optimal acaricide applications were considered.

Table 2. Summary of control simulations performed.

Scenario Constant or variable Type of control Objective

1 Constant grass Quadratic Maximize disease-free ticks
2 Constant woods Quadratic Maximize disease-free ticks
3 Constant grass Mixed Maximize disease-free ticks
4 Constant woods Mixed Maximize disease-free ticks
5 Constant grass Bang-bang Maximize disease-free ticks
6 Constant woods Bang-bang Maximize disease-free ticks
7 Constant grass Quadratic Minimize diseased ticks
8 Constant woods Quadratic Minimize diseased ticks
9 Constant grass Mixed Minimize diseased ticks

10 Constant woods Mixed Minimize diseased ticks
11 Constant grass Bang-bang Minimize diseased ticks
12 Constant woods Bang-bang Minimize diseased ticks
13 Variable grass Quadratic Maximize disease-free ticks
14 Variable woods Quadratic Maximize disease-free ticks
15 Variable grass Mixed Maximize disease-free ticks
16 Variable woods Mixed Maximize disease-free ticks
17 Variable grass Bang-bang Maximize disease-free ticks
18 Variable woods Bang-bang Maximize disease-free ticks
19 Variable grass Quadratic Minimize diseased ticks
20 Variable woods Quadratic Minimize diseased ticks
21 Variable grass Mixed Minimize diseased ticks
22 Variable woods Mixed Minimize diseased ticks
23 Variable grass Bang-bang Minimize diseased ticks
24 Variable woods Bang-bang Minimize diseased ticks
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The optimal control problem was solved using an iterative scheme derived by Hackbush [13]
and described briefly here. Using an initial guess for the control, δ, the states, N , V , X, Y , are
solved forward in time, and then the adjoints, λi , i = 1 − 4, are solved backwards in time. If the
new values of the state and adjoint variables differ from the previous values, the new values are
used to update δ and the process is repeated until the system converges. The state equations are
given by Equations (1)–(4) with the initial conditions given in Table 1.

Two habitat types, grassy and wooded, are considered for each of the objective functionals.
These habitat types differ in the natural external death rate for ticks as well as the carrying capacity
for hosts as given in Table 1. We consider quadratic, mixed and linear objective functionals as
given in Equations (6), (16) and (18), as well as the problems of maximizing the healthy tick
population (C1 �= 0) or minimizing the diseased tick population (C1 = 0). In all cases, the adjoint
variables must satisfy Equations (9)–(12) with the final time conditions given by Equation (13).
The optimality conditions used to update the control vary between the quadratic, mixed and linear
approaches given in Equations (14), (17) and (18), respectively. For each scenario, the optimal
control system is run for 30 years using 360 monthly time steps with the control variable set to
an initial guess of 0.0 for all time.

From Table 3, we can see that the predicted optimal control strategy differs greatly between
the scenarios using constant birth and death rates (1–12) (Figure 1) and the scenarios using

Table 3. Summary results for each scenario.

Maximum optimal Time at Stop all Treatment
Scenario treatment maximum treatment cost

1 0.269 (0.3) 28.916667 29.916667 87.955079
2 0.29 (0.3) 25.666667 25.666667 88.869936
3 0.28 (0.3) 24.916667 24.833333 82.746523
4 0.28 (0.3) 26.416667 26.250000 86.766443
5 0.28 (0.3) 25.000000 24.833333 83.460439
6 0.28 (0.3) 26.583333 26.416667 87.649798
7 0.2675 (0.3) 29.583333 29.916667 88.923389
8 0.28 (0.3) 29.666667 29.916667 94.682668
9 0.28 (0.3) 24.916667 24.833333 83.197294
10 0.28 (0.3) 27.333333 27.333333 91.287848
11 0.28 (0.3) 25.083333 24.916667 83.74412
12 0.28 (0.3) 27.416667 27.250000 91.575036
13 0.1 (0.1) 5.583333 10.916667 10.630587
14 0.1 (0.1) 22.750000 22.833333 25.296268
14a 0.175 (0.175) 12.083333 12.500000 25.296268
15 0.1 (0.1) 3.583333 12.083333 9.317537
16 0.1 (0.1) 22.333333 22.166667 26.612752
16a 0.175 (0.175) 11.583333 12.166667 24.995588
17 0.1 (0.1) 3.583333 12.000000 9.301185
18 0.1 (0.1) 22.333333 22.250000 26.6369
18a 0.175 (0.175) 11.583333 12.166667 24.984107
19 0.1 (0.1) 3.416667 26.000000 12.506637
20 0.1 (0.1) 19.583333 29.333333 31.050363
20a 0.175 (0.175) 12.583333 29.166667 32.28216
21 0.1 (0.1) 3.583333 13.083333 9.451533
22 0.1 (0.1) 20.500000 27.000000 27.994741
22a 0.175 (0.175) 10.583333 17.083333 26.785332
23 0.100000 3.583333 13.083333 9.502303
24 0.100000 20.500000 27.000000 28.001424
24a 0.165000 10.583333 17.166667 26.905953

Notes: For each scenario described in Table 2, a number of metrics are derived from the optimal solution. ‘Maximum optimal treatment’ is
the maximum value of the control solution, and the value in parenthesis is the value used for δmax for that scenario. ‘Time at maximum’ is
the number of years that the control solution remains at the maximum optimal treatment. ‘Stop all treatment’ is the year when all treatment
is stopped out of the 30-year simulation. ‘Treatment cost’ is the projected cost of treatment for the entire 30 years as defined by

∫ T

0 δ dt .
Scenario numbers followed by an ‘a’ have the same construct with a different maximum treatment rate.
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Figure 1. Plots for Scenario 1 (constant grass, quadratic control, maximize disease-free ticks). Top left: total tick
population over time. Top right: percent of ticks infected over time. Bottom left: total host population over time (note
minimum for Y -axis is 19.0). Bottom right: percent of hosts infected over time. Results from Scenarios 2–12 all produced
similar plots. Note that the disease is recurrent at the end time in these scenarios that do not reflect the seasonally fluctuating
tick life cycle.

Figure 2. Plots for Scenario 13 (constant grass, quadratic control, maximize disease-free ticks). Top left: total tick
population over time. Top right: percent of ticks infected over time. Bottom left: total host population over time (note
minimum for Y -axis is 19.0). Bottom right: percent of hosts infected over time. Results from Scenarios 14–24 all produced
similar plots.
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the varying birth and death rates (13–24) (Figure 2). It is important to note that while the
results from the varying birth and death rates seem to show chattering, this is simply a reflec-
tion of the input parameter variation. The scenarios with constant rates shows that the control
efforts will be required to continue at the maximum treatment for an average of more than
26 of the 30-year period. There is little difference with the constant rate scenarios between
the grass and wooded habitats. There is also little difference whether using quadratic, mixed
or bang-bang control techniques. Finally, there is little difference in the cost of treatment
as defined by the sum of effort required for that strategy across all constant rate scenarios
(Figures 2–6).

In contrast, the variable rate scenarios predict control to be needed for as little as 11 years
with an average of 13.5 years at maximum treatment. In addition, the level of effort required
by the variable rate scenarios is less than half that of the constant rates with similar reductions
in the percent of infected ticks. The wooded habitats showed better control in a shorter period
of time using an increased maximum treatment rate. The grass habitats (13, 15, 17, 19, 21 and
23) predicted that year-round treatment would only be required for the first 3–5 years followed
by another approximately 10 years of seasonal application of maximum control effort. This
shortened time frame is reflected in the far smaller costs of the strategies in the grass habitats.
This prediction remained consistent across all optimal control techniques and for both objective
functionals.

The wooded habitats (14, 16, 18, 20, 22 and 24) predicted approximately 12 years of year-round
control with no additional effort in the remaining 18 years. If the wooded habitat is limited to
the maximum rate used for the grass habitat, it would take an additional eight or more years of
treatment.

Figure 3. Optimal treatment for Scenario 1 (constant grass, quadratic control, maximize disease free ticks). Note that
there is a constant treatment required for nearly the entire length of the scenario. Predicted optimal controls for Scenarios
2–12 produced similar results.
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Figure 4. Optimal treatment for Scenario 13 (variable grass, quadratic control, maximize disease-free ticks). Note that
after a couple years of constant treatment, the treatment is tapered back to seasonal application and then stopped well
before the end of the scenario. Predicted optimal controls for Scenarios 14–24 produced similar results with variation in
when constant treatment stopped and when treatment stopped entirely (Table 3).

Figure 5. Optimal treatment for Scenario 15 (variable grass, quadratic control, maximize disease-free ticks). This is
offered as a comparison between quadratic (Figure 4), mixed and linear (Figure 6) objective functionals. As we mention
in Figure 2, the end effect on the tick population is similar.
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Figure 6. Optimal treatment for Scenario 17 (variable grass, quadratic control, maximize disease-free ticks). This is
offered as a comparison between quadratic, mixed and linear objective functionals. As we mention in Figure 2, the end
effect on the tick population is similar.

3.3. Discussion

This model used six objective functionals to suggest optimal strategies for eradicating tick disease
and suggested similar outcomes at a similar cost regardless of the choice of functional. In particular,
this suggests that one could give wildlife managers simplified bang-bang advice without loss
of results. Secondly, later metapopulation studies can be simplified by not explicitly requiring
the preservation of the tick population since the end populations were not sizeably affected by
competing strategies.

With constant tick birth and death terms, it is more challenging to control tick disease without
eliminating the ticks. The variable birth and death rates reflecting the tick’s life history provides a
focused time for control efforts. These results highlight the importance of including the tick’s life
history into a model to assess the potential interventions. This model still has many assumptions
that could affect the predictions for the optimal application tick-killing treatment.

Given the differences in the optimal control identified between the grassy and wooded habitats,
we will next turn our attention to a spatially explicit, metapopulation optimal control problem.
This will allow us to investigate the question of where as well as when and how much tick-killing
effort should be used. Additionally, we will need to explore the application of optimal control
to models reflecting other tick-borne diseases, such as Lyme disease or Rocky Mountain spotted
fever, with more complicated life histories.

The ultimate questions for individuals interested in controlling risk of tick-borne diseases in
an area are ‘how long’ and ‘how much’ treatment will be needed to significantly reduce disease
risk. The results of this optimal control research indicate that any effort will have to be sustained
for many years at an intense level. The results are consistent for all scenarios, but those including
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the tick life history indicate that this seasonally-fluctuating activity level can be advantageous in
minimizing disease risk.
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