10 research outputs found

    Phase transition energetics in mesoscale photosynthetic condensates

    Full text link
    The pyrenoid is a model two-component biomolecular condensate, vital for efficient photosynthesis in algae. Despite simulations predicting qualitative features of liquid-liquid phase separation driving their formation, the underlying energetics remain unclear. By modelling interactions between Rubisco protein carbon-capturing machinery inside pyrenoids as linker chemical and stretch potentials we explain spectroscopic and single-molecule data over physiological concentrations. This new parametrisation can be used for quantitative predictions in generalized emergent self-assembly of two-component condensates.Comment: v2: correction in the calculations v3: added experimental wor

    Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness

    Full text link
    Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which in general lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies of proteins, to undercover their role in cell stress. We find that proteins inside aggresomes are mobile and undergo dynamic turnover, consistent with a liquid state. Our observations are in quantitative agreement with phase-separated liquid droplet formation driven by interacting proteins under thermal equilibrium that nucleate following diffusive collisions in the cytoplasm. We have discovered aggresomes in multiple species of bacteria, and show that these emergent, metastable liquid-structured protein assemblies increase bacterial fitness by enabling cells to tolerate environmental stresses

    Morphology formation in binary mixtures upon gradual destabilisation

    Get PDF
    Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation is strongly affected by critical thermal fluctuations. We propose a mechanism of pretransitional structuring of a mixture that approaches the miscibility gap and predict scaling relations that describe how the characteristic feature size of the emerging morphology decreases with an increasing quench rate. These predictions quantitatively agree with our kinetic Monte Carlo and molecular dynamics simulations of a phase-separating binary mixture, as well as with previously reported experimental observations. We discuss how these predictions are affected by non-conserved order parameters (e.g., due to chemical reactions or alignment of liquid-crystalline molecules), hydrodynamics and active transport

    Controlling the cooperativity in the supramolecular polymerization of ionic discotic amphiphiles via electrostatic screening

    No full text
    In a combined experimental and theoretical approach, we investigate the supramolecular polymerization of ionic discotic amphiphiles into nanorods of varying mean length, depending on the temperature and ionic strength of the buffered aqueous solution. Invoking a nucleated supramolecular polymerization model that explicitly deals with the effects of screened Coulomb interactions, we correlate the degree of cooperativity of the supramolecular polymerization with the ionic strength of the solution, as probed by means of circular dichroism spectroscopy. Experiment and theory show that electrostatic interactions between the amphiphiles in the rods make the polymerization less cooperative, implying that the larger the concentration of mobile ions in the solution the larger the cooperativity due to their screening effect. We furthermore extract quantitative information about the effective surface charge densities of the supramolecular nanorods in solution, a parameter that has been particularly difficult to determine experimentally in other related self-assembled systems

    Coastal greening of grey infrastructure: An update on the state-of-the-art

    No full text
    In the marine environment, greening of grey infrastructure (GGI) is a rapidly growing field that attempts to encourage native marine life to colonize marine artificial structures to enhance biodiversity, thereby promoting ecosystem functioning and hence service provision. By designing multifunctional sea defences, breakwaters, port complexes and off-shore renewable energy installations, these structures can yield myriad environmental benefits, in particular, addressing UN SDG 14: Life below water. Whilst GGI has shown great promise and there is a growing evidence base, there remain many criticisms and knowledge gaps, and some feel that there is scope for GGI to be abused by developers to facilitate harmful development. Given the surge of research in this field in recent years, it is timely to review the literature to provide an update update on the state-of-the-art of the field in relation to the many criticisms and identify remaining knowledge gaps. Despite the rapid and significant advances made in this field, there is currently a lack of science and practice outside of academic sectors in the developed world, and there is a collective need for schemes that encourage intersectoral and transsectoral research, knowledge exchange, and capacity building to optimize GGI in the pursuit of contributing to sustainable development

    Intraoperative ventilator settings and their association with postoperative pulmonary complications in neurosurgical patients: post-hoc analysis of LAS VEGAS study

    No full text
    Background: Limited information is available regarding intraoperative ventilator settings and the incidence of postoperative pulmonary complications (PPCs) in patients undergoing neurosurgical procedures. The aim of this post-hoc analysis of the 'Multicentre Local ASsessment of VEntilatory management during General Anaesthesia for Surgery' (LAS VEGAS) study was to examine the ventilator settings of patients undergoing neurosurgical procedures, and to explore the association between perioperative variables and the development of PPCs in neurosurgical patients. Methods: Post-hoc analysis of LAS VEGAS study, restricted to patients undergoing neurosurgery. Patients were stratified into groups based on the type of surgery (brain and spine), the occurrence of PPCs and the assess respiratory risk in surgical patients in Catalonia (ARISCAT) score risk for PPCs. Results: Seven hundred eighty-four patients were included in the analysis; 408 patients (52%) underwent spine surgery and 376 patients (48%) brain surgery. Median tidal volume (VT) was 8 ml [Interquartile Range, IQR = 7.3-9] per predicted body weight; median positive end-expiratory pressure (PEEP) was 5 [3 to 5] cmH20. Planned recruitment manoeuvres were used in the 6.9% of patients. No differences in ventilator settings were found among the sub-groups. PPCs occurred in 81 patients (10.3%). Duration of anaesthesia (odds ratio, 1.295 [95% confidence interval 1.067 to 1.572]; p = 0.009) and higher age for the brain group (odds ratio, 0.000 [0.000 to 0.189]; p = 0.031), but not intraoperative ventilator settings were independently associated with development of PPCs. Conclusions: Neurosurgical patients are ventilated with low VT and low PEEP, while recruitment manoeuvres are seldom applied. Intraoperative ventilator settings are not associated with PPCs

    Association between night-time surgery and occurrence of intraoperative adverse events and postoperative pulmonary complications

    No full text
    Background: The aim of this post hoc analysis of a large cohort study was to evaluate the association between night-time surgery and the occurrence of intraoperative adverse events (AEs) and postoperative pulmonary complications (PPCs). Methods: LAS VEGAS (Local Assessment of Ventilatory Management During General Anesthesia for Surgery) was a prospective international 1-week study that enrolled adult patients undergoing surgical procedures with general anaesthesia and mechanical ventilation in 146 hospitals across 29 countries. Surgeries were defined as occurring during 'daytime' when induction of anaesthesia was between 8: 00 AM and 7: 59 PM, and as 'night-time' when induction was between 8: 00 PM and 7: 59 AM. Results: Of 9861 included patients, 555 (5.6%) underwent surgery during night-time. The proportion of patients who developed intraoperative AEs was higher during night-time surgery in unmatched (43.6% vs 34.1%; P<0.001) and propensity-matched analyses (43.7% vs 36.8%; P = 0.029). PPCs also occurred more often in patients who underwent night-time surgery (14% vs 10%; P = 0.004) in an unmatched cohort analysis, although not in a propensity-matched analysis (13.8% vs 11.8%; P = 0.39). In a multivariable regression model, including patient characteristics and types of surgery and anaesthesia, night-time surgery was independently associated with a higher incidence of intraoperative AEs (odds ratio: 1.44; 95% confidence interval: 1.09-1.90; P = 0.01), but not with a higher incidence of PPCs (odds ratio: 1.32; 95% confidence interval: 0.89-1.90; P = 0.15). Conclusions: Intraoperative adverse events and postoperative pulmonary complications occurred more often in patients undergoing night-time surgery. Imbalances in patients' clinical characteristics, types of surgery, and intraoperative management at night-time partially explained the higher incidence of postoperative pulmonary complications, but not the higher incidence of adverse events

    Association between night-time surgery and occurrence of intraoperative adverse events and postoperative pulmonary complications

    No full text
    Background: The aim of this post hoc analysis of a large cohort study was to evaluate the association between night-time surgery and the occurrence of intraoperative adverse events (AEs) and postoperative pulmonary complications (PPCs)
    corecore