442 research outputs found

    Disease concepts and treatment by tribal healers of an Amazonian forest culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture.</p> <p>Methods</p> <p>The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed.</p> <p>Results</p> <p>20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture.</p> <p>Conclusion</p> <p>The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications.</p

    Association of APOE polymorphism with chronic kidney disease in a nationally representative sample: a Third National Health and Nutrition Examination Survey (NHANES III) Genetic Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apolipoprotein E polymorphisms (<it>APOE</it>) have been associated with lowered glomerular filtration rate (GFR) and chronic kidney disease (CKD) with e2 allele conferring risk and e4 providing protection. However, few data are available in non-European ethnic groups or in a population-based cohort.</p> <p>Methods</p> <p>The authors analyzed 5,583 individuals from the Third National Health and Nutrition Examination Survey (NHANES III) to determine association with estimated GFR by the Modification of Diet in Renal Disease (MDRD) equation and low-GFR cases. Low-GFR cases were defined as GFR <75 ml/min/1.73 m<sup>2</sup>; additionally, GFR was analyzed continuously.</p> <p>Results</p> <p>In univariate analysis, the e4 allele was negatively associated with low-GFR cases in non-Hispanic whites, odds ratio (OR): 0.76, 95% confidence interval (CI): 0.60, 0.97. In whites, there was a significant association between increasing <it>APOE </it>score (indicating greater number of e2 alleles) and higher prevalence of low-GFR cases (OR: 1.21, 95%CI: 1.01, 1.45). Analysis of continuous GFR in whites found the e4 allele was associated with higher levels of continuous GFR (β-coefficient: 2.57 ml/min/1.73 m<sup>2</sup>, 95%CI: 0.005, 5.14); in non-Hispanic blacks the e2 allele was associated with lower levels of continuous GFR (β-coefficient: -3.73 ml/min/1.73 m<sup>2</sup>, 95%CI: -6.61, -0.84). <it>APOE </it>e2 and e4 alleles were rare and not associated with low-GFR cases or continuous GFR in Mexican Americans.</p> <p>Conclusion</p> <p>In conclusion, the authors observed a weak association between the <it>APOE </it>e4 allele and low-GFR cases and continuous GFR in non-Hispanic whites, and the <it>APOE </it>e2 allele and continuous GFR in non-Hispanic blacks, but found no association with either measure of kidney function in Mexican Americans. Larger studies including multiethnic groups are needed to determine the significance of this association.</p

    Genome-Wide Mutagenesis of Xanthomonas axonopodis pv. citri Reveals Novel Genetic Determinants and Regulation Mechanisms of Biofilm Formation

    Get PDF
    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation

    Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner.

    Get PDF
    Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV

    Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

    Get PDF
    Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientIfico e Tecnologico (CNPq)Coordenacao para Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Fundo de Defesa da Citricultura (FUNDECITRUS

    Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    Get PDF
    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species

    Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    Get PDF
    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained from unknown strains in both chromatogram and FASTA format
    • …
    corecore