227 research outputs found

    Volume increment modeling and subsidies for the management of the tree Mora paraensis (Ducke) Ducke based on the study of growth rings.

    Get PDF
    The aim of the present study was to contribute to increased sustainability in the timber management of Mora paraensis, through the estimation of minimum logging diameter (MLD) and felling cycle, using volume increment models based on tree-ring analysis and allometric relationships. We collected stem discs from 17 trees of five diameter classes. The diameters and heights of the trees were also measured. We estimated tree ages by ring-counting and the radial increment rates by measuring the ring widths with a digital analysis system. We built growth models based on relationships between age, diameter and tree height to estimate volume increment along the tree?s whole life cycle. The maximum current diameter increment in M. paraensis occurs at an age of around 26 years, reaching 4.91 m

    Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    No full text
    International audienceThis is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ?10 cm diameter at breast height, DBH) have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density). Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha?1 between the four stands. Carbon sequestration differs 0.50?4.24 Mg C ha?1 yr?1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB)

    Advances in increment coring system for large tropical trees with high wood densities

    Get PDF
    Incremental coring of trees is the key method used in non-destructive dendrochronological sampling. Despite the advances in developing such methods, the sampling of large, high-density trees still poses a challenge in remote tropical forests. Manually operated incremental drills, while easy to transport across difficult terrain, limit sample size and can often get damaged in the sampling process, especially when trees have wood densities above 0.8 g/cm³. Here, we discuss the existing available alternatives and present an up-to-date incremental coring system composed of a borer coupled to a hand-held drilling machine and a support attached to the tree which can collect incremental cores of 1.5 mm in diameter and over 1.0 m in length. The support ensures stability for the drill throughout the sampling process. This system is relatively lightweight and portable, offering field flexibility and suitability for sampling in remote locations. It provides a core sample of an appropriate diameter and amount for carrying out ring-width measurements, stable isotope and radiocarbon analyses on some of the large, older trees which are now being found in the tropics. We expect that this methodology will broaden the possibilities in the now-blossoming sub-field of tropical dendrochronology.1. Introduction 2. Description 2.1. Drilling machine 2.2. Drill 2.3. Support 3. Operating instructions and system testing 4. Discussion 5. Conclusion

    Intensification of the Amazon hydrological cycle over the last two decades

    Get PDF
    Reproduced with permission of the publisher. Online Open article. © 2013 American Geophysical UnionThe Amazon basin hosts half the planet's remaining moist tropical forests, but they may be threatened in a warming world. Nevertheless, climate model predictions vary from rapid drying to modest wetting. Here we report that the catchment of the world's largest river is experiencing a substantial wetting trend since approximately 1990. This intensification of the hydrological cycle is concentrated overwhelmingly in the wet season driving progressively greater differences in Amazon peak and minimum flows. The onset of the trend coincides with the onset of an upward trend in tropical Atlantic sea surface temperatures (SST). This positive longer-term correlation contrasts with the short-term, negative response of basin-wide precipitation to positive anomalies in tropical North Atlantic SST, which are driven by temporary shifts in the intertropical convergence zone position. We propose that the Amazon precipitation changes since 1990 are instead related to increasing atmospheric water vapor import from the warming tropical Atlantic

    Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes

    Get PDF
    Rainfall and river levels in the Amazon are associated with significant precipitation anomalies of opposite sign in temperate North and South America, which is the dominant mode of precipitation variability in the Americas that often arises during extremes of the El Niño/Southern Oscillation (ENSO). This co-variability of precipitation extremes across the Americas is imprinted on tree growth and is detected when new tree-ring chronologies from the eastern equatorial Amazon are compared with hundreds of moisture-sensitive tree-ring chronologies in mid-latitude North and South America from 1759 to 2016. Pan-American co-variability exists even though the seasonality of precipitation and tree growth only partially overlaps between the Amazon and mid-latitudes because ENSO forcing of climate can persist for multiple seasons and can orchestrate a coherent response, even where the growing seasons are not fully synchronized. The tree-ring data indicate that the El Niño influence on inter-hemispheric precipitation and tree growth extremes has been strong and stable over the past 258-years, but the La Niña influence has been subject to large multi-decadal changes. These changes have implications for the dynamics and forecasting of hydroclimatic variability over the Americas and are supported by analyses of the available instrumental data and selected climate model simulations.Fil: Stahle, D.W.. University of Arkansas for Medical Sciences; Estados UnidosFil: Torbenson, Max Carl Arne. Ohio State University; Estados UnidosFil: Howard, I. M.. University of Arkansas for Medical Sciences; Estados UnidosFil: Granato Souza, D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Barbosa, A. C.. Universidad Federal de Lavras; BrasilFil: Feng, S.. University of Arkansas for Medical Sciences; Estados UnidosFil: Schöngart, J.. National Institute For Amazon Research; BrasilFil: Lopez Callejas, Lidio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Villanueva, J.. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias; MéxicoFil: Fernandes, K.. Columbia University; Estados Unido

    Tree-ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40 years

    Get PDF
    Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δ18OTR) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that δ18OTR of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore δ18OTR increases by approximately 2‰ over the last four decades (~ 1970–2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The δ18OTR record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of δ18OTR with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in δ18OTR and decrease in dry season rainfall

    Исследование остаточных углеводородов в ходе деструкции гептана углеводородокисляющими микроорганизмами рода Pseudomonas и Rodococcus

    Get PDF
    Molding of micro structures by injection molding leads to special requirements for the molds e.g. regarding wear resistance and low release forces of the molded components. At the same time it is not allowed to affect the replication precision. Physical vapor deposition (PVD) is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the melt of polymers. Physical vapor deposition technology allows the deposition of thin films on micro structures. Therefore, the influence of these PVD layers on the contour accuracy of the replicated micro structures has to be investigated. For this purpose injection mold inserts were laser structured with micro structures of different sizes and afterwards coated with two different coatings, which were deposited by a magnetron sputter ion plating PVD technology. After deposition, the coatings were analyzed by techniques regarding hardness, Young's modulus and morphology. The geometries of the micro structures were analyzed by scanning electron microscopy before and after coating. Afterwards, the coated mold inserts were used for injection molding experiments. During the injection molding process, a conventional and a variothermal temperature control of the molds were used. The molded parts were analyzed regarding roughness, structure height and structure width by means of laser microscopy
    corecore