127 research outputs found

    Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Full text link
    The short-lived 182^{182}Hf-182^{182}W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ϔ182\epsilon^{182}W values obtained for the IAB iron meteorites range from -3.61 ±\pm 0.10 to -2.73 ±\pm 0.09. Correlating ϔi\epsilon^{\mathrm{i}}Pt with 182^{182}W data yields a pre-neutron capture 182^{182}W of -2.90 ±\pm 0.06. This corresponds to a metal-silicate separation age of 6.0 ±\pm 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ±\pm 0.1 Ma after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/

    The thallium isotope composition of carbonaceous chondrites - New evidence for live 205Pb in the early solar system

    Get PDF
    The extinct radionuclide 205Pb, which decays to 205Tl with a half-life of 15 Ma, is of considerable cosmochemical interest, as it is the only short-lived isotope that is produced exclusively by s-process nucleosynthesis. Evidence for the existence of 205Pb in the early solar system has only recently been obtained from analyses of IAB iron meteorites, but significant uncertainties remain about the initial 205Pb abundance and Tl isotope composition of the solar system. In an attempt to better constrain these values, a comprehensive 205Pb–205Tl isochron study was carried out on ten carbonaceous chondrites of groups CI, CM, CV, CO and CR. The Pb and Cd isotope compositions of the meteorites were also determined, to correct for terrestrial Pb contamination and eliminate samples that exhibit fractionated Tl isotope compositions from thermal processing.\ud The analyses revealed only limited variation in Δ205Tl, with values of between − 4.0 and + 1.2, but nonetheless the Tl isotope compositions correlate with Pb/Tl ratios. This correlation is unlikely to be due to stable isotope fractionation from terrestrial weathering or early solar system processes, and is most readily explained by in situ decay of 205Pb to 205Tl. Previous 53Mn–53Cr and 107Pd–107Ag studies of bulk carbonaceous chondrites provide evidence that the Pb–Tl isochron records volatile fractionation in the solar nebula at close to 4567 Ma. The isochron thus yields the initial 205Pb abundance and Tl isotope composition of the solar system, with values of 205Pb/204PbSS,0 = (1.0 ± 0.4) × 10− 3 and Δ205TlSS,0 = − 7.6 ± 2.1, respectively. These results confirm the previous Pb–Tl data for IAB iron meteorites, which provided the first clear evidence for the existence of live 205Pb in the early solar system.\ud The initial 205PbSS,0 abundance inferred from carbonaceous chondrites demonstrates that the 205Pb–205Tl decay system is well suited for chronological studies of early solar system processes that produce fractionations in Pb/Tl ratios, including core crystallization and the mobilization of volatiles during thermal processing. The 205PbSS,0 abundance is close to the upper limit of nucleosynthetic production estimates for AGB stars and thus in accord with contributions of such stars to the early solar system budget of freshly synthesized radioisotopes

    The thallium isotope composition of carbonaceous chondrites - New evidence for live 205Pb in the early solar system

    Get PDF
    The extinct radionuclide 205Pb, which decays to 205Tl with a half-life of 15 Ma, is of considerable cosmochemical interest, as it is the only short-lived isotope that is produced exclusively by s-process nucleosynthesis. Evidence for the existence of 205Pb in the early solar system has only recently been obtained from analyses of IAB iron meteorites, but significant uncertainties remain about the initial 205Pb abundance and Tl isotope composition of the solar system. In an attempt to better constrain these values, a comprehensive 205Pb–205Tl isochron study was carried out on ten carbonaceous chondrites of groups CI, CM, CV, CO and CR. The Pb and Cd isotope compositions of the meteorites were also determined, to correct for terrestrial Pb contamination and eliminate samples that exhibit fractionated Tl isotope compositions from thermal processing. The analyses revealed only limited variation in Δ205Tl, with values of between − 4.0 and + 1.2, but nonetheless the Tl isotope compositions correlate with Pb/Tl ratios. This correlation is unlikely to be due to stable isotope fractionation from terrestrial weathering or early solar system processes, and is most readily explained by in situ decay of 205Pb to 205Tl. Previous 53Mn–53Cr and 107Pd–107Ag studies of bulk carbonaceous chondrites provide evidence that the Pb–Tl isochron records volatile fractionation in the solar nebula at close to 4567 Ma. The isochron thus yields the initial 205Pb abundance and Tl isotope composition of the solar system, with values of 205Pb/204PbSS,0 = (1.0 ± 0.4) × 10− 3 and Δ205TlSS,0 = − 7.6 ± 2.1, respectively. These results confirm the previous Pb–Tl data for IAB iron meteorites, which provided the first clear evidence for the existence of live 205Pb in the early solar system. The initial 205PbSS,0 abundance inferred from carbonaceous chondrites demonstrates that the 205Pb–205Tl decay system is well suited for chronological studies of early solar system processes that produce fractionations in Pb/Tl ratios, including core crystallization and the mobilization of volatiles during thermal processing. The 205PbSS,0 abundance is close to the upper limit of nucleosynthetic production estimates for AGB stars and thus in accord with contributions of such stars to the early solar system budget of freshly synthesized radioisotopes

    The origin of s-process isotope heterogeneity in the solar protoplanetary disk

    Get PDF
    Rocky asteroids and planets display nucleosynthetic isotope variations that are attributed to the heterogeneous distribution of stardust from different stellar sources in the solar protoplanetary disk. Here we report new high-precision palladium isotope data for six iron meteorite groups. The palladium data display smaller nucleosynthetic isotope variations than the more refractory neighbouring elements. Based on this observation, we present a model in which thermal destruction of interstellar dust in the inner Solar System results in an enrichment of s-process-dominated stardust in regions closer to the Sun. We propose that stardust is depleted in volatile elements due to incomplete condensation of these elements into dust around asymptotic giant branch stars. This led to the smaller nucleosynthetic variations for Pd reported here and the lack of such variations for more volatile elements. The smaller magnitude variations measured in heavier refractory elements suggest that material from high-metallicity asymptotic giant branch stars is the dominant source of stardust in the Solar System. These stars produce fewer heavy s-process elements (proton number Z >= 56) compared with the bulk Solar System composition

    Ferromanganese crusts as archives of deep water Cd isotope compositions

    Get PDF
    The geochemistry of Cd in seawater has attracted significant attention owing to the nutrient-like properties of this element. Recent culturing studies have demonstrated that Cd is a biologically important trace metal that plays a role in the sequestration of inorganic carbon. This conclusion is supported by recent isotope data for Cd dissolved in seawater and incorporated in cultured phytoplankton. These results show that plankton features isotopically light Cd while Cd-depleted surface waters typically exhibit complimentary heavy Cd isotope compositions. Seawater samples from below 900 m depth display a uniform and intermediate isotope composition of Δ114/110Cd = +3.3 ± 0.5. This study investigates whether ferromanganese (Fe-Mn) crusts are robust archives of deep water Cd isotope compositions. To this end, Cd isotope data were obtained for the recent growth surfaces of 15 Fe-Mn crusts from the Atlantic, Pacific, Indian, and Southern oceans and two USGS Fe-Mn reference nodules using double spike multiple collector inductively coupled plasma mass spectrometry. The Fe-Mn crusts yield a mean Δ114/110Cd of +3.2 ± 0.4 (2 SE, n = 14). Data for all but one of the samples are identical, within the analytical uncertainty of ±1.1Δ114/110Cd (2 SD), to the mean deep water Cd isotope value. This indicates that Fe-Mn crusts record seawater Cd isotope compositions without significant isotope fractionation. A single sample from the Southern Ocean exhibits a light Cd isotope composition of Δ114/110Cd = 0.2 ± 1.1. The origin of this signature is unclear, but it may reflect variations in deep water Cd isotope compositions related to differences in surface water Cd utilization or long-term changes in seawater Δ114/110Cd. The results suggest that time series analyses of Fe-Mn crusts may be utilized to study changes in marine Cd utilization

    TEMPus VoLA: The timed Epstein multi-pressure vessel at low accelerations.

    Get PDF
    The field of planetary system formation relies extensively on our understanding of the aerodynamic interaction between gas and dust in protoplanetary disks. Of particular importance are the mechanisms triggering fluid instabilities and clumping of dust particles into aggregates, and their subsequent inclusion into planetesimals. We introduce the timed Epstein multi-pressure vessel at low accelerations, which is an experimental apparatus for the study of particle dynamics and rarefied gas under micro-gravity conditions. This facility contains three experiments dedicated to studying aerodynamic processes: (i) the development of pressure gradients due to collective particle-gas interaction, (ii) the drag coefficients of dust aggregates with variable particle-gas velocity, and (iii) the effect of dust on the profile of a shear flow and resultant onset of turbulence. The approach is innovative with respect to previous experiments because we access an untouched parameter space in terms of dust particle packing fraction, and Knudsen, Stokes, and Reynolds numbers. The mechanisms investigated are also relevant for our understanding of the emission of dust from active surfaces, such as cometary nuclei, and new experimental data will help interpreting previous datasets (Rosetta) and prepare future spacecraft observations (Comet Interceptor). We report on the performance of the experiments, which has been tested over the course of multiple flight campaigns. The project is now ready to benefit from additional flight campaigns, to cover a wide parameter space. The outcome will be a comprehensive framework to test models and numerical recipes for studying collective dust particle aerodynamics under space-like conditions

    Abundances of the elements in the solar system

    Full text link
    A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New York: Springer-Verlag, p. 560-63
    • 

    corecore