153 research outputs found

    The nature of the recent extreme outburst of the Herbig Be/FU Ori binary Z CMa

    Full text link
    Z CMa is a binary system which consists of two young stars: A Herbig AeBe component "Z CMa NW" embedded in a dust cocoon and a less massive component "Z CMa SE", which is classified as a FU Orionis type star. Recently, the system showed the largest outburst reported during the almost 90 years of available observations. During the recent outburst we detect that the Z CMa system is polarized by 2.6% in the continuum and emission line spectrum, with a position angle still perpendicular to the jet. From the high level of polarization we conclude that the outburst is associated with the dust embedded Herbig AeBe NW component. The main result of our studies is that the bolometric luminosity of Z CMa remained surprisingly constant during the recent "outburst". We conclude that either the geometry of the cavity through which the light escapes from the cocoon has opened a new path, or that the screen of dust, which reflects the light toward the observer became more efficient causing the observed increase of the visual brightness by about 2.5 magnitudes.Comment: letter to A&A, accepted 17/12/200

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&

    Magnetic chemically peculiar stars

    Full text link
    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.Comment: 9 pages, 4 figures, 2 tables, chapter in "Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    HD 965: An extremely peculiar A star with an extremely long rotation period

    Full text link
    Context. One of the keys to understanding the origin of the Ap stars and their significance in the general context of stellar astrophysics is the consideration of the most extreme properties displayed by some of them. In that context, HD 965 is particularly interesting, as it combines some of the most pronounced chemical peculiarities with one of the longest rotation periods known. Aims. We characterise the variations of the magnetic field of the Ap star HD 965 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 965 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO archive spectra. Results. We present the first determination of the rotation period of HD 965, P = (16.5+/-0.5) y. HD 965 is only the third Ap star with a period longer than 10 years for which magnetic field measurements have been obtained over more than a full cycle. The variation curve of is well approximated by a cosine wave. does not show any significant variation. The observed behaviour of these field moments is well represented by a simple model consisting of the superposition of collinear dipole, quadrupole and octupole. The distribution of neodymium over the surface of HD 965 is highly non-uniform. The element appears concentrated around the magnetic poles, especially the negative one. Conclusions. The shape of the longitudinal magnetic variation curve of HD 965 indicates that its magnetic field is essentially symmetric about an axis passing through the centre of the star. Overall, as far as its magnetic field is concerned, HD 965 appears similar to the bulk of the long-period Ap stars.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1902.0586

    VLTI monitoring of the dust formation event of the Nova V1280 Scorpii

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Context. We present the first high spatial-resolution monitoring of the dust-forming nova V1280 Sco, performed with the Very Large Telescope Interferometer (VLTI). Aims. These observations promise to improve the distance determination of such events and constrain the mechanisms leading to very efficient dust formation under the harsh physical conditions encountered in novae ejecta. Methods. Spectra and visibilities were regularly acquired between the onset of dust formation, 23 days after discovery (or 11 days after maximum), and day 145, using the beam-combiner instruments AMBER (near-IR) and MIDI (mid-IR). These interferometric observations were complemented by near-infrared data from the 1.2 m Mt. Abu Infrared Observatory, India. The observations are initially interpreted in terms of simple uniform models; however more complex models, probably involving a second shell, are required to explain data acquired following t = 110 d after outburst. This behavior is in accordance with the light curve of V1280 Sco, which exhibits a secondary peak at about t = 106 d, followed by a new, steep decline, suggesting a new dust-forming event. Spherical dust shell models generated with the DUSTY code are used to investigate the parameters of the main dust shell. Results. Using uniform disk models, these observations allow us to determine an apparent linear expansion rate for the dust shell of 0.35 ± 0.03 mas day−1 and the approximate ejection time of the matter in which dust formed of tejec = 10.5 ± 7 d, i.e. close to the maximum brightness. This information, combined with the expansion velocity of 500 ± 100 km s−1, implies a distance estimate of 1.6 ± 0.4 kpc. The sparse uv coverage does not enable deviations from spherical symmetry to be clearly discerned. The dust envelope parameters were determined. The dust mass generated was typically 2–8 × 10−9 M day−1, with a probable peak in production at about 20 days after the detection of dust and another peak shortly after t = 110 d, when the amount of dust in the shell was estimated as 2.2 × 10−7 M. Considering that the dust-forming event lasted at least 200–250 d, the mass of the ejected material is likely to have exceeded 10−4 M. The conditions for the formation of multiple shells of dust are also discussed. K

    Statistics of magnetic field measurements in OBA stars and the evolution of their magnetic fields

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim We review the measurements of magnetic fields of OBA stars. Based on these data, we confirm that magnetic fields are distributed according to a lognormal law with mean log B = − 0.5 (B in kG) with a standard deviation σ = 0.5. The shape of the magnetic field distribution (MFD) is similar to that for neutron stars. This finding favors the hypothesis that the magnetic field of a neutron star is determined mainly by the magnetic field of its predecessor, namely the massive OB star. Further, we model the evolution of an ensemble of magnetic massive stars in the Galaxy. We use our own population synthesis code to obtain the distribution of stellar radii, ages, masses, temperatures, effective magnetic fields, and magnetic fluxes from the pre-main-sequence (PMS) via zero-age main sequence (ZAMS) up to the terminal-age main sequence stages. A comparison of the MFD obtained in our model with that obtained from the recent measurements of the stellar magnetic field allows us to conclude that the evolution of magnetic fields of massive stars is slow if not absent. The shape of the real MFD shows no indications of the magnetic desert proposed previously. Based on this finding, we argue that the observed fraction of magnetic stars is determined by physical conditions at the PMS stage of stellar evolution

    Effects of Intra- and Interpatch Host Density on Egg Parasitism by Three Species of Trichogramma

    Get PDF
    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley — as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more random foraging pattern

    Direct constraint on the distance of y2 Velorum from AMBER/VLTI observations

    Get PDF
    In this work, we present the first AMBER observations, of the Wolf-Rayet and O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered spectrally dispersed visibilities, as well as differential and closure phases, with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret these data in the context of a binary system with unresolved components, neglecting in a first approximation the wind-wind collision zone flux contribution. We show that the AMBER observables result primarily from the contribution of the individual components of the WR+O binary system. We discuss several interpretations of the residuals, and speculate on the detection of an additional continuum component, originating from the free-free emission associated with the wind-wind collision zone (WWCZ), and contributing at most to the observed K-band flux at the 5% level. The expected absolute separation and position angle at the time of observations were 5.1±0.9mas and 66±15° respectively. However, we infer a separation of 3.62+0.11-0.30 mas and a position angle of 73+9-11°. Our analysis thus implies that the binary system lies at a distance of 368+38-13 pc, in agreement with recent spectrophotometric estimates, but significantly larger than the Hipparcos value of 258+41-31 pc

    Near-Infrared interferometry of Eta Carinae with high spatial and spectral resolution using the VLTI and the AMBER instrument

    Get PDF
    We present the first NIR spectro-interferometry of the LBV Eta Carinae. The K band observations were performed with the AMBER instrument of the ESO Very Large Telescope Interferometer using three 8.2m Unit Telescopes with baselines from 42 to 89m. The aim of this work is to study the wavelength dependence of Eta Car's optically thick wind region with a high spatial resolution of 5 mas (11 AU) and high spectral resolution. The medium spectral resolution observations (R=1,500) were performed in the wavelength range around both the HeI 2.059 micron and the Br gamma 2.166 micron emission lines, the high spectral resolution observations (R=12,000) only in the Br gamma line region. In the K-band continuum, a diameter of 4.0 +/-0.2 mas (Gaussian FWHM, fit range 28-89m) was measured for Eta Car's optically thick wind region. If we fit Hillier et al. (2001) model visibilities to the observed AMBER visibilities, we obtain 50 % encircled-energy diameters of 4.2, 6.5 and 9.6mas in the 2.17 micron continuum, the HeI, and the Br gamma emission lines, respectively. In the continuum near the Br gamma line, an elongation along a position angle of 120+/-15 degrees was found, consistent with previous VLTI/VINCI measurements by van Boekel et al. (2003). We compare the measured visibilities with predictions of the radiative transfer model of Hillier et al. (2001), finding good agreement. Furthermore, we discuss the detectability of the hypothetical hot binary companion. For the interpretation of the non-zero differential and closure phases measured within the Br gamma line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions.Comment: 22 pages, 14 figures, 2 tables; A&A in pres

    Searching for a link between the magnetic nature and other observed properties of Herbig Ae/Be stars and stars with debris disks

    Full text link
    Among the 21 Herbig Ae/Be stars studied, new detections of a magnetic field were achieved in six stars. For three Herbig Ae/Be stars, we confirm previous magnetic field detections. The largest longitudinal magnetic field, = -454+-42G, was detected in the Herbig Ae/Be star HD101412 using hydrogen lines. No field detection at a significance level of 3sigma was achieved in stars with debris disks. Our study does not indicate any correlation of the strength of the longitudinal magnetic field with disk orientation, disk geometry, or the presence of a companion. We also do not see any simple dependence on the mass-accretion rate. However, it is likely that the range of observed field values qualitatively supports the expectations from magnetospheric accretion models giving support for dipole-like field geometries. Both the magnetic field strength and the X-ray emission show hints for a decline with age in the range of ~2-14Myrs probed by our sample supporting a dynamo mechanism that decays with age. However, our study of rotation does not show any obvious trend of the strength of the longitudinal magnetic field with rotation period. Furthermore, the stars seem to obey the universal power-law relation between magnetic flux and X-ray luminosity established for the Sun and main-sequence active dwarf stars.Comment: 21 pages, 16 figures, 7 tables, accepted for publication in A&
    corecore