430 research outputs found

    Holographic Imaging of Crowded Fields: High Angular Resolution Imaging with Excellent Quality at Very Low Cost

    Full text link
    We present a method for speckle holography that is optimised for crowded fields. Its two key features are an iterativ improvement of the instantaneous Point Spread Functions (PSFs) extracted from each speckle frame and the (optional) simultaneous use of multiple reference stars. In this way, high signal-to-noise and accuracy can be achieved on the PSF for each short exposure, which results in sensitive, high-Strehl re- constructed images. We have tested our method with different instruments, on a range of targets, and from the N- to the I-band. In terms of PSF cosmetics, stability and Strehl ratio, holographic imaging can be equal, and even superior, to the capabilities of currently available Adaptive Optics (AO) systems, particularly at short near-infrared to optical wavelengths. It outperforms lucky imaging because it makes use of the entire PSF and reduces the need for frame selection, thus leading to higher Strehl and improved sensitivity. Image reconstruction a posteriori, the possibility to use multiple reference stars and the fact that these reference stars can be rather faint means that holographic imaging offers a simple way to image large, dense stellar fields near the diffraction limit of large telescopes, similar to, but much less technologically demanding than, the capabilities of a multi-conjugate adaptive optics system. The method can be used with a large range of already existing imaging instruments and can also be combined with AO imaging when the corrected PSF is unstable.Comment: Accepted for publication in MNRAS on 15 Nov 201

    L- and M-band imaging observations of the Galactic Center region

    Full text link
    We present near-infrared H-, K-, L- and M-band photometry of the Galactic Center from images obtained at the ESO VLT in May and August 2002, using the NAOS/CONICA (H and K) and the ISAAC (L and M) instruments. The large field of view (70" x 70") of the ISAAC instrument and the large number of sources identified (L-M data for 541 sources) allows us to investigate colors, infrared excesses and extended dust emission. Our new L-band magnitude calibration reveals an offset to the traditionally used calibrations, which we attribute to the use of the variable star IRS7 as a flux calibrator. Together with new results on the extinction towards the Galactic Center (Scoville et al. 2003; Raab 2000), our magnitude calibration results in stellar color properties expected from standard stars and removes any necessity to modify the K-band extinction. The large number of sources for which we have obtained L-M colors allows us to measure the M-band extinction to A_M=(0.056+-0.006)A_V (approximately =A_L), a considerably higher value than what has so far been assumed. L-M color data has not been investigated previously, due to lack of useful M-band data. We find that this color is a useful diagnostic tool for the preliminary identification of stellar types, since hot and cool stars show a fairly clear L-M color separation. This is especially important if visual colors are not available, as in the Galactic Center. For one of the most prominent dust embedded sources, IRS3, we find extended L- and M-band continuum emission with a characteristic bow-shock shape. An explanation for this appearance is that IRS3 consists of a massive, hot, young mass-losing star surrounded by an optically thick, extended dust shell, which is pushed northwest by wind from the direction of the IRS16 cluster and SgrA*.Comment: 24 pages, 7 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Properties of bow-shock sources at the Galactic center

    Full text link
    There are an enigmatic population of massive stars around the Galactic Center (GC) that were formed some Ma ago. A fraction of these stars has been found to orbit the supermassive black hole, SgrA*, in a projected clockwise disk, which suggests that they were formed in a formerly existing dense disk around SgrA*. We focus on the extended, near-infrared (NIR) sources IRS1W, IRS5, IRS10W, and IRS21 that have been suggested to be young, massive stars that form bow-shocks through their interaction with the ISM. Their nature has impeded accurate determination of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. We performed NIR multi-wavelength imaging using adaptive optics (AO) and sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM PSF in dense stellar fields. The emission mechanism, morphology and kinematics of the targets were examined via 3D bow-shock models. We confirm previous findings that IRS21, IRS1W, and IRS5 are bow-shocks created by the interaction between mass-losing stars and the interstellar gas. The nature of IRS10W remains unclear. Our modeling shows that the bow-shock-emission is caused by thermal emission while the scattering of stellar light does not play any significant role. IRS 1W appears to be a bow-shock produced by an anisotropic stellar wind or by locally inhomogeneous ISM density. Our best-fit models provide an estimate of the local proper motion of the ISM in the NA in agreement with the published models. Assuming that all of the sources are tied to SgrA*, their orbital planes were obtained via a Monte-Carlo simulation. Our orbital analysis suggests that they are not part of any of the clockwise disk. We thus add more evidence to recent findings that a large part of the massive stars show apparently random orbital orientations.Comment: accepted for publication by A&A, 17 pages, 11 figures, 1 appendi

    First VLTI infrared spectro-interferometry on GCIRS 7 - Characterizing the prime reference source for Galactic center observations at highest angular resolution

    Get PDF
    Investigating the environment of the massive black hole SgrA* at the center of the Galaxy requires the highest angular resolution available to avoid source confusion and to study the physical properties of the individual objects. GCIRS7 has been used as wavefront and astrometric reference. Our studies investigate, for the first time, its properties at 2&10um using VLTI/AMBER and MIDI. We aim at analyzing the suitability of IRS7 as an IF-phase-reference for the upcoming generation of dual-field facilities at optical interferometers. We observed with (R~30) and 50m (proj.) baseline, resulting in 9 and 45mas resolution for NIR and MIR, resp. The first K-band fringe detection of a GC star suggests that IRS7 could be marginally resolved at 2um, which would imply that the photosphere of the supergiant is enshrouded by a molecular and dusty envelope. At 10um, IRS7 is strongly resolved with a visibility of approximately 0.2. The MIR is dominated by moderately warm (200 K), extended dust, mostly distributed outside of a radius of about 120 AU (15 mas) around the star. A deep 9.8-silicate absorption in excess of the usual extinction law with respect to the NIR extinction has been found. This confirms recent findings of a relatively enhanced, interstellar 9.8-silicate absorption with respect to the NIR extinction towards another star in the central arcsec, suggesting an unusual dust composition in that region. Our VLTI observations show that interferometric NIR phase-referencing experiments with mas resolution using IRS7 as phase-reference appear to be feasible, but more such studies are required to definitely characterize the close environment around this star. We demonstrate that interferometry is required to resolve the innermost environment of stars at the Galactic center.Comment: 6 pages, 2 figures, accepted for publication in A&

    NACO/SAM observations of sources at the Galactic Center

    Full text link
    Sparse aperture masking (SAM) interferometry combined with Adaptive Optics (AO) is a technique that is uniquely suited to investigate structures near the diffraction limit of large telescopes. The strengths of the technique are a robust calibration of the Point Spread Function (PSF) while maintaining a relatively high dynamic range. We used SAM+AO observations to investigate the circumstellar environment of several bright sources with infrared excess in the central parsec of the Galaxy. For our observations, unstable atmospheric conditions as well as significant residuals after the background subtraction presented serious problems for the standard approach of calibrating SAM data via interspersed observations of reference stars. We circumvented these difficulties by constructing a synthesized calibrator directly from sources within the field-of-view. When observing crowded fields, this novel method can boost the efficiency of SAM observations because it renders interspersed calibrator observations unnecessary. Here, we presented the first NaCo/SAM images reconstructed using this method.Comment: 8 pages, 10 figures, proceedings of the conference "Astrophysics at High Angular Resolution" (AHAR-2011

    The enigma of GCIRS 3 - Constraining the properties of the mid-infrared reference star of the central parsec of the Milky Way with optical long baseline interferometry

    Full text link
    GCIRS3 is the most prominent MIR source in the central pc of the Galaxy. NIR spectroscopy failed to solve the enigma of its nature. The properties of extreme individual objects of the central stellar cluster contribute to our knowledge of star and dust formation close to a supermassive black hole. We initiated an interferometric experiment to understand IRS3 and investigate its properties as spectroscopic and interferometric reference star at 10um. VISIR imaging separates a compact source from diffuse, surrounding emission. The VLTI/MIDI instrument was used to measure visibilities at 10mas resolution of that compact 10um source, still unresolved by a single VLT. Photometry data were added to enable simple SED- and full radiative transfer-models of the data. The luminosity and size estimates show that IRS3 is probably a cool carbon star enshrouded by a complex dust distribution. Dust temperatures were derived. The coinciding interpretation of multiple datasets confirm dust emission at several spatial scales. The IF data resolve the innermost area of dust formation. Despite observed deep silicate absorption towards IRS3 we favor a carbon rich chemistry of the circumstellar dust shell. The silicate absorption most probably takes place in the outer diffuse dust, which is mostly ignored by MIDI measurements. This indicates physically and chemically distinct conditions of the local dust, changing with the distance to IRS3. We have demonstrated that optical long baseline interferometry at infrared wavelengths is an indispensable tool to investigate sources at the Galactic Center. Our findings suggest further studies of the composition of interstellar dust and the shape of the 10um silicate feature at this outstanding region.Comment: accepted by A&A, now in press; 19 pages, 22 figures, 5 table

    A Black Hole in the Galactic Center Complex IRS 13E?

    Full text link
    The IRS 13E complex is an unusual concentration of massive, early-type stars at a projected distance of ~0.13 pc from the Milky Way's central supermassive black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and their common nature as massive, young stars it has recently been suggested that IRS 13E may be the remnant of a massive stellar cluster containing an intermediate-mass black hole (IMBH) that binds its members gravitationally in the tidal field of Sgr A*. Here, we present an analysis of the proper motions in the IRS~13E environment that combines the currently best available data with a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum mass of ~10^4 solar masses in order to bind the source complex gravitationally. This high mass limit in combination with the absence so far of compelling evidence for a non-thermal radio and X-ray source in IRS 13E make it appear unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind the system gravitationally.Comment: accepted by AP

    Direct Detection of the Tertiary Component in the Massive Multiple HD 150 136 with VLTI

    Full text link
    Massive stars are of fundamental importance for almost all aspects of astrophysics, but there still exist large gaps in our understanding of their properties and formation because they are rare and therefore distant. It has been found that most O-stars are multiples. HD 150 136 is the nearest system to Earth with >100 M_sol, and provides a unique opportunity to study an extremely massive system. Recently, evidence for the existence of a third component in HD 150 136, in addition to the tight spectroscopic binary that forms the main component, was found in spectroscopic observations. Our aim was to image and obtain astrometric and photometric measurements of this component using long baseline optical interferometry to further constrain the nature of this component. We observed HD150136 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer. The recovered closure phases are robust to systematic errors and provide unique information on the source asymmetry. Therefore, they are of crucial relevance for both image reconstruction and model fitting of the source structure. The third component in HD 150 136 is clearly detected in the high-quality data from AMBER. It is located at a projected angular distance of 7.3 mas, or about 13 AU at the line-of-sight distance of HD 150 136, at a position angle of 209 degrees East of North, and has a flux ratio of 0.25 with respect to the inner binary. We resolved the third component of HD 150 136 in J, H and K filters. The luminosity and color of the tertiary agrees with the predictions and shows that it is also an O main-sequence star. The small measured angular separation indicates that the tertiary may be approaching the periastron of its orbit. These results, only achievable with long baseline near infrared interferometry, constitute the first step towards the understanding of the massive star formation mechanisms

    Radio Continuum Observations of the Galactic Center: Photoevaporative Proplyd-like Objects near Sgr A*

    Full text link
    We present radio images within 30'' of Sgr A* based on recent VLA observations at 34 GHz with 7.8 microJy sensitivity and resolution 88×46\sim88\times46 milliarcseconds (mas). We report 44 partially resolved compact sources clustered in two regions in the E arm of ionized gas that orbits Sgr A*. These sources have size scales ranging between ~50 and 200 mas (400 to 1600 AUs), and a bow-shock appearance facing the direction of Sgr A*. Unlike the bow-shock sources previously identified in the near-IR but associated with massive stars, these 34 GHz sources do not appear to have near-IR counterparts at 3.8 μ\mum. We interpret these sources as a candidate population of photoevaporative protoplanetary disks (proplyds) that are associated with newly formed low mass stars with mass loss rates ~10^{-7} - 10^{-6} solar mass per year and are located at the edge of a molecular cloud outlined by ionized gas. The disks are externally illuminated by strong Lyman continuum radiation from the ~100 OB and WR massive stars distributed within 10'' of Sgr A*. The presence of proplyds implies current in-situ star formation activity near Sgr A* and opens a window for the first time to study low mass star, planetary and brown dwarf formations near a supermassive black hole.Comment: 13 pages, 4 figures, ApJL (in press

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure
    corecore