14 research outputs found

    A half-century of studies on a chromosomal hybrid zone of the house mouse

    Get PDF
    The first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss–Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion. The metacentric races are characterized by highly reduced diploid numbers (2n = 22–26) resulting from Robertsonian fusions, perhaps modified by whole-arm reciprocal translocations. The races hybridize and the whole Poschiavo-Valtellina area can be considered a “hybrid zone.” The studies of this area have provided insights into origin of races within hybrid zones, gene flow within hybrid zones and the possibility of speciation in hybrid zones. This provides a case study of how chromosomal rearrangements may impact the genetic structure of populations and their diversification.Fil: GimĂ©nez, Mabel Dionisia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Posadas; Argentina. University of York; Reino UnidoFil: Förster, Daniel W.. Leibniz-institute For Zoo And Wildlife Research; Alemania. University of York; Reino UnidoFil: Jones, Eleanor P.. University of York; Reino Unido. Fera Science; Reino UnidoFil: JĂłhannesdĂłttir, Fríđa. University of York; Reino Unido. Cornell University; Estados UnidosFil: Gabriel, Sofia I.. Universidade de Lisboa; Portugal. University of York; Reino UnidoFil: Panithanarak, Thadsin. Burapha University; Tailandia. University of York; Reino UnidoFil: Scascitelli, Moira. University of York; Reino UnidoFil: Merico, Valeria. Universita Di Pavia; ItaliaFil: Garagna, Silvia. Universita Di Pavia; ItaliaFil: Searle, Jeremy B.. University of York; Reino Unido. Cornell University; Estados UnidosFil: Hauffe, Heidi C.. Instituto Agrario San Michele All'adige Fondazione Edmund Mach. Centro Ricerca E Innovazione; Italia. University of York; Reino Unid

    Position and sequence conservation in Amniota of polymorphic enhancer HS1.2 within the palindrome of IgH 3'Regulatory Region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Immunoglobulin heavy chain (IgH) 3' Regulatory Region (3'RR), located at the 3' of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3'RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3'RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region.</p> <p>Results</p> <p>We compared the 3'RR organization in genomes of vertebrates to depict the evolutionary history of the region and highlight its shared features. We found that in the 8 species in which the whole region was included in a fully assembled contig (mouse, rat, dog, rabbit, panda, orangutan, chimpanzee, and human), the shared elements showed synteny and a highly conserved sequence, thus suggesting a strong evolutionary constraint. In these species, the wide 3'RR (~30 kb in human) bears a large palindromic sequence, consisting in two ~3 kb complementary branches spaced by a ~3 kb sequence always including the HS1.2 enhancer. In mouse and rat, HS3 is involved by the palindrome so that one copy of the enhancer is present on each side. A second relevant feature of our present work concerns human polymorphism of the HS1.2 enhancer, associated to immune diseases in our species. We detected a similar polymorphism in all the studied Catarrhini (a primate parvorder). The polymorphism consists of multiple copies of a 40 bp element up to 12 in chimpanzees, 8 in baboons, 6 in macaque, 5 in gibbons, 4 in humans and orangutan, separated by stretches of Cytosine. We show specific binding of this element to nuclear factors.</p> <p>Conclusions</p> <p>The nucleotide sequence of the palindrome is not conserved among evolutionary distant species, suggesting pressures for the maintenance of two self-matching regions driving a three-dimensional structure despite of the inter-specific divergence at sequence level. The information about the conservation of the palindromic structure and the settling in primates of the polymorphic feature of HS1.2 show the relevance of these structures in the control and modulation of the Ig production through the formation of possible three-dimensional structures.</p

    Data from: Detecting small-scale genotype-environment interactions in apomictic dandelion (Taraxacum officinale) populations

    No full text
    Studies of genotype × environment interactions (G×E) and local adaptation provide critical tests of natural selection’s ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype-environment associations in the field (neither of which is possible for most sexual species). Here we tested for G×E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown, and benign (control) conditions, and subsequently using microsatellites to assess genotype-environment associations in the field. We found strong G×E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise >80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square meters typically embedded within larger mown lawns. By studying an asexual species we were able to map genotypes with known ecological characteristics to environments with high spatial precision

    An Interspecific Plant Hybrid Shows Novel Changes in Parental Splice Forms of Genes for Splicing Factors

    No full text
    Interspecific hybridization plays an important role in plant adaptive evolution and speciation, and the process often results in phenotypic novelty. Hybrids can show changes in genome structure and gene expression compared with their parents including chromosomal rearrangments, changes in cytosine methylation, up- and downregulation of gene expression, and gene silencing. Alternative splicing (AS) is a fundamental aspect of the expression of many genes. However alternative splicing patterns have not been examined in multiple genes in an interspecific plant hybrid compared with its parents. Here we studied alternative splicing patterns in an interspecific Populus hybrid and its parents by assaying 40 genes using reverse transcription PCR. Most of the genes showed identical alternative splicing patterns between the parents and the hybrid. We found new alternative splicing variants present in the hybrid in two SR genes involved in the regulation of splicing and alternative splicing. The novel alternative splicing patterns included changes in donor and acceptor sites to create a new exon in one allele of PtRSZ22 in the hybrid and retention of an intron in both alleles of PtSR34a.1 in the hybrid, with effects on the function of the corresponding truncated proteins, if present. Our results suggest that novel alternative splicing patterns are present in a small percentage of genes in hybrids, but they could make a considerable impact on the expression of some genes. Changes in alternative splicing are likely to be an important component of the genetic changes that occur upon interspecific hybridization

    Noug microsatellite data

    No full text
    This file contains microsatellite scores (allele fragment lengths) for 16 loci and 639 individuals, representing 33 populations of noug (Guizotia abyssinica) and it's wild relative (Guizotia scabra ssp. schimperii)

    Results of Taraxacum officinale genotyping and Genotype by Environment field experiment

    No full text
    Record of T. officinale genotypes identified in sampling of Vancouver populations. Results of T. officinale Genotype by Environment (GxE) field experiment conducted at Totem Field, University of British Columbia, Vancouver, B.C., Canada. GxE results include leaf area of the control treatment at 5 and 8 weeks, root and total biomass of the mow treatment, and number of days to partial and full wilting of the drought treatment

    Tracking chromosomal origins in the Northern Italy system of metacentric races of the house mouse

    No full text
    The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into "systems." Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation ("zonal raciation"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal system

    Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae

    No full text
    Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long‐term evolutionary fates and consequences of different ploidal levels

    Of mice and (Viking?) men: phylogeography of British and Irish house mice

    No full text
    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the ‘Orkney’ lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history
    corecore