457 research outputs found
Efeito de fosfito de potássio na viabilidade de urediósporos de Phakopsora euvitis.
Suplemento. Edição dos Resumos do 42 Congresso Brasileiro de Fitopatologia, Rio de Janeiro, ago. 2009
The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in
the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent
a series of upgrades, involving the exchange of the MAGIC-I camera and its
trigger system, as well as the upgrade of the readout system of both
telescopes. We use observations of the Crab Nebula taken at low and medium
zenith angles to assess the key performance parameters of the MAGIC stereo
system. For low zenith angle observations, the standard trigger threshold of
the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources
with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula
flux in 50 h of observations. The angular resolution, defined as the sigma of a
2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while
the energy resolution is 16%. We also re-evaluate the effect of the systematic
uncertainty on the data taken with the MAGIC telescopes after the upgrade. We
estimate that the systematic uncertainties can be divided in the following
components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for
the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle
Physic
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Environmental restoration by aquatic angiosperm transplants in transitional water systems: The Venice Lagoon as a case study
The paper reports the results obtained after 4 years of aquatic angiosperm transplants in areas of the Venice Lagoon (North Adriatic Sea, Mediterranean) where meadows almost disappeared due to eutrophication, pollution and overexploitation of clam resources. The project LIFE12 NAT/IT/000331-SeResto, funded by the European Union, allowed to recolonize the Habitat 1150* (coastal lagoons) in the northernmost part of the lagoon, by extensive manual transplants of small sods or single rhizomes of Zostera marina, Zostera noltei, Ruppia cirrhosa and, in some stations also of Cymodocea nodosa. Over the 4 years of the project more than 75,000 rhizomes were transplanted in 35 stations with the support of local stakeholders (fishermen, hunters and sport clubs). Plants took root in 32 stations forming extensive meadows on a surface of approx. 10 km2 even if some failures were recorded in areas affected by outflows of freshwater rich in nutrients and suspended particulate matter. The rapid recovery of the ecological status of the involved areas was the result of this meadow restoration, which was in compliance with Water Framework Directive (WFD 2000/60/EC) objectives. Moreover, the monitoring of environmental parameters in the water column and in surface sediments allowed to identify the best conditions for successful transplants. Small, widespread interventions and the participation of local stakeholders in the environmental recovery, make this action economically cheap and easily transposable in other similar environments
MAGIC observations of MWC 656, the only known Be/BH system
Context: MWC 656 has recently been established as the first observationally
detected high-mass X-ray binary system containing a Be star and a black hole
(BH). The system has been associated with a gamma-ray flaring event detected by
the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656
gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays.
Methods. We have observed MWC 656 with the MAGIC telescopes for 23 hours
during two observation periods: between May and June 2012 and June 2013. During
the last period, observations were performed contemporaneously with X-ray
(XMM-Newton) and optical (STELLA) instruments. Results: We have not detected
the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either
of the two campaigns carried out. Upper limits (ULs) to the integral flux above
300 GeV have been set, as well as differential ULs at a level of 5% of
the Crab Nebula flux. The results obtained from the MAGIC observations do not
support persistent emission of very high energy gamma rays from this system at
a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table
Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC
One fundamental question about pulsars concerns the mechanism of their pulsed
electromagnetic emission. Measuring the high-end region of a pulsar's spectrum
would shed light on this question. By developing a new electronic trigger, we
lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov
(MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed
gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a
relatively high cutoff energy in the phase-averaged spectrum. This indicates
that the emission occurs far out in the magnetosphere, hence excluding the
polar-cap scenario as a possible explanation of our measurement. The high
cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function
to the combined data set of COMPTEL, EGRET and MAGIC. Final result and
conclusion is unchange
Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes
PG 1553+113 is a very-high-energy (VHE, ) -ray
emitter classified as a BL Lac object. Its redshift is constrained by
intergalactic absorption lines in the range . The MAGIC telescopes
have monitored the source's activity since 2005. In early 2012, PG 1553+113 was
found in a high-state, and later, in April of the same year, the source reached
its highest VHE flux state detected so far. Simultaneous observations carried
out in X-rays during 2012 April show similar flaring behaviour. In contrast,
the -ray flux at observed by Fermi-LAT is
compatible with steady emission. In this paper, a detailed study of the flaring
state is presented. The VHE spectrum shows clear curvature, being well fitted
either by a power law with an exponential cut-off or by a log-parabola. A
simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE
-ray spectrum is rejected with a high significance (fit probability
P=2.6 ). The observed curvature is compatible with the
extragalactic background light (EBL) imprint predicted by current generation
EBL models assuming a redshift . New constraints on the redshift are
derived from the VHE spectrum. These constraints are compatible with previous
limits and suggest that the source is most likely located around the optical
lower limit, , based on the detection of Ly absorption. Finally,
we find that the synchrotron self-Compton (SSC) model gives a satisfactory
description of the observed multi-wavelength spectral energy distribution
during the flare.Comment: 13 pages, 7 figures, accepted for publication in MNRA
Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between
October 2009 and April 2011. Analysis of this data sample using the latest
improvements in the MAGIC stereoscopic software provided an unprecedented
precision of spectral and night-by-night light curve determination at gamma
rays. We derived a differential spectrum with a single instrument from 50 GeV
up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC
results, combined with Fermi-LAT data, show a flat and broad Inverse Compton
peak. The overall fit to the data between 1 GeV and 30 TeV is not well
described by a log-parabola function. We find that a modified log-parabola
function with an exponent of 2.5 instead of 2 provides a good description of
the data (). Using systematic uncertainties of red the MAGIC and
Fermi-LAT measurements we determine the position of the Inverse Compton peak to
be at (53 3stat + 31syst -13syst) GeV, which is the most precise
estimation up to date and is dominated by the systematic effects. There is no
hint of the integral flux variability on daily scales at energies above 300 GeV
when systematic uncertainties are included in the flux measurement. We consider
three state- of-the-art theoretical models to describe the overall spectral
energy distribution of the Crab Nebula. The constant B-field model cannot
satisfactorily reproduce the VHE spectral measurements presented in this work,
having particular difficulty reproducing the broadness of the observed IC peak.
Most probably this implies that the assumption of the homogeneity of the
magnetic field inside the nebula is incorrect. On the other hand, the
time-dependent 1D spectral model provides a good fit of the new VHE results
when considering a 80 {\mu}G magnetic field. However, it fails to match the
data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which
has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on
its gamma-ray spectral properties, it was identified as a potential very high
energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC
first in 2009 and later in 2010 within a multi-instrument observation campaign.
The MAGIC observations yielded 14.8 hours of good quality stereoscopic data.
The object was monitored at radio, optical and gamma-ray energies during the
years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the
first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E >
70 GeV) during a 1.3-hour long observation on 2010 July 16. The
multi-instrument observations show variability in all energy bands with the
highest amplitude of variability in the X-ray and VHE bands. We also organized
deep imaging optical observations with the Nordic Optical Telescope in 2013 to
determine the source redshift. We determine for the first time the redshift of
this BL Lac object through the measurement of its host galaxy during low blazar
activity. Using the observational evidence that the luminosities of BL Lac host
galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/-
0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide
an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more
accurate) redshift value, we adequately describe the broadband emission with a
one-zone SSC model for different activity states and interpret the few-day
timescale variability as produced by changes in the high-energy component of
the electron energy distribution.Comment: 17 pages, 15 figures, Accepted for publication in A&
- …