373 research outputs found
Characterization of a scintillating fibers read by MPPC detectors trigger prototype for the AMADEUS experiment
Multi-Pixel Photon Counters (MPPC) consist of hundreds of micro silicon
Avalanche PhotoDiodes (APD) working in Geiger mode. The high gain and the low
noise, typical of these devices, together with their good performance in
magnetic field, make them ideal readout detectors for scintillating fibers as
trigger detectors in particle and nuclear physics experiments like AMADEUS,
where such detectors are planned to be used to trigger on charged kaon pairs.
In order to investigate the detection efficiency of such a system, a prototype
setup consisting of 32, 1 mm diameter scintillating fibers, arranged in two
double layers of 16 fibers each, and read out by 64 MPPCs with an ad-hoc built
readout electronics, was tested at the piM-1 line of the Paul Scherrer
Institute (PSI) in Villigen, Switzerland. The detection efficiency and the
trigger capability were measured on a beam containing protons, electrons, muons
and pions with a momentum of 440 MeV/c. The measured average efficiency for
protons for a double layer of scintillating fibers (96.9 +/-1.2%) represents a
guarantee of the good performance of this system as a trigger for the AMADEUS
experiment.Comment: 9 pages, 9 figures, 2 tables, sent to JINST for publicatio
Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment
The VIP (Violation of Pauli exclusion principle) experiment and its follow-up
experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for
X-rays from Cu atomic states that are prohibited by the Pauli Exclusion
Principle (PEP). The candidate events, if they exist, will originate from the
transition of a orbit electron to the ground state which is already
occupied by two electrons. The present limit on the probability for PEP
violation for electron is 4.7 set by the VIP experiment. With
upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment
will improve the sensitivity by two orders of magnitude.Comment: 5 pages, 3 figures, 1 table. Conference proceedings for oral
presentation at TAUP 2015, Torin
Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study
Compared to 1.5 T, 3 T magnetic resonance imaging (MRI) increases signal-to-noise ratio leading to improved image quality. However, its clinical relevance in clinically isolated syndrome suggestive of multiple sclerosis remains uncertain
Beyond quantum mechanics? Hunting the 'impossible' atoms (Pauli Exclusion Principle violation and spontaneous collapse of the wave function at test)
The development of mathematically complete and consistent models solving the
so-called "measurement problem", strongly renewed the interest of the
scientific community for the foundations of quantum mechanics, among these the
Dynamical Reduction Models posses the unique characteristic to be
experimentally testable. In the first part of the paper an upper limit on the
reduction rate parameter of such models will be obtained, based on the analysis
of the X-ray spectrum emitted by an isolated slab of germanium and measured by
the IGEX experiment.
The second part of the paper is devoted to present the results of the VIP
(Violation of the Pauli exclusion principle) experiment and to describe its
recent upgrade. The VIP experiment established a limit on the probability that
the Pauli Exclusion Principle (PEP) is violated by electrons, using the very
clean method of searching for PEP forbidden atomic transitions in copper
Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS
The AMADEUS experiment aims to provide unique quality data of hadronic
interactions in light nuclear targets, in order to solve fundamental open
questions in the non-perturbative strangeness QCD sector, like the
controversial nature of the state, the yield of hyperon
formation below threshold, the yield and shape of multi-nucleon
absorption, processes which are intimately connected to the possible existence
of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the
DANE collider, which provides a unique source of monochromatic
low-momentum kaons and exploits the KLOE detector as an active target, in order
to obtain excellent acceptance and resolution data for nuclear capture on
H, He, Be and C, both at-rest and in-flight. During the
second half of 2012 a successful data taking was performed with a dedicated
pure carbon target implemented in the central region of KLOE, providing a high
statistic sample of pure at-rest nuclear interactions. For the future
dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure
-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target
We measured the -series X-rays of the exotic atom in the
SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about
15 times the of hydrogen gas. At this density, the absolute
yields of kaonic X-rays, when a negatively charged kaon stopped inside the
target, were determined to be 0.012 for and
0.043 for all the -series transitions . These
results, together with the KEK E228 experiment results, confirm for the first
time a target density dependence of the yield predicted by the cascade models,
and provide valuable information to refine the parameters used in the cascade
models for the kaonic atoms.Comment: 9 pages, 5 figures. Submitted to Nuclear Physics A, Special Issue on
Strangeness and Char
Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction
In the exotic atoms where one atomic electron is replaced by a ,
the strong interaction between the and the nucleus introduces an energy
shift and broadening of the low-lying kaonic atomic levels which are determined
by only the electromagnetic interaction. By performing X-ray spectroscopy for
Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the
shift and width for the state of and the state of kaonic
helium-3 and kaonic helium-4. These results provided unique information of the
kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015
conference, Kolymbari, Cret
Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle
The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist
Wolfgang Pauli in 1925. Since then, several experiments have checked its
validity. From 2006 until 2010, the VIP (VIolation of the Pauli Principle)
experiment took data at the LNGS underground laboratory to test the PEP. This
experiment looked for electronic 2p to 1s transitions in copper, where 2
electrons are in the 1s state before the transition happens. These transitions
violate the PEP. The lack of detection of X-ray photons coming from these
transitions resulted in a preliminary upper limit for the violation of the PEP
of . Currently, the successor experiment VIP2 is under
preparation. The main improvements are, on one side, the use of Silicon Drift
Detectors (SDDs) as X-ray photon detectors. On the other side an active
shielding is implemented, which consists of plastic scintillator bars read by
Silicon Photomultipliers (SiPMs). The employment of these detectors will
improve the upper limit for the violation of the PEP by around 2 orders of
magnitude
VIP 2: Experimental tests of the Pauli Exclusion Principle for electrons
The Pauli Exclusion Principle (PEP) was famously discovered in 1925 by the
austrian physicist Wolfgang Pauli. Since then, it underwent several
experimental tests. Starting in 2006, the VIP (Violation of the Pauli
Principle) experiment looked for 2p to 1s X-ray transitions in copper, where 2
electrons are present in the 1s state before the transition happens. These
transitions violate the PEP, and the lack of detection of the corresponding
X-ray photons lead to a preliminary upper limit for the violation of the PEP of
4.7 * 10^(-29). The follow-up experiment VIP 2 is currently in the testing
phase and will be transported to its final destination, the underground
laboratory of Gran Sasso in Italy, in autumn 2015. Several improvements
compared to its predecessor like the use of new X-ray detectors and active
shielding from background gives rise to a goal for the improvement of the upper
limit of the probability for the violation of the Pauli Exclusion Principle of
2 orders of magnitude
- …
