20 research outputs found

    Hop Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in Ttc26

    Get PDF
    Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed hop mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. Hop mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The hop mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in hop mice has been suggested to lie within the Ttc26 gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within Ttc26 displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein

    Strong signatures of selection in the domestic pig genome

    Get PDF
    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection

    Stratigraphic correlation and paleoenvironmental analysis of the hydrocarbon-bearing Early Miocene Euphrates and Jeribe formations in the Zagros folded-thrust belt

    Get PDF
    The Lower Miocene Euphrates and Jeribe formations are considered as the main targets of the Tertiary petroleum system in the western part of the Zagros Basin. The formations consist of carbonates with some evaporate intercalations of the Dhiban Formation. This study utilized data from a field investigation including newly described outcrop sections and newly discovered productive oil fields within the Kirkuk embayment zone of the Zagros fold and thrust belt such as Sarqala and Kurdamir wells. This work is the first to show a stratigraphic correlation and paleoenvironmental interpretation by investigating both well data and new outcrop data. Three depositional environments were identified, (1) an inner and outer ramp belts environment, (2) shoal environment, and (3) restricted lagoon environment. Within these 3 environments, 12 microfacies were identified, based on the distribution of fauna mainly benthonic foraminifera, rock textures, and sedimentary structures. The inferred shallow water depths and variable salinities in both the Euphrates Formation and Jeribe Formation carbonates are consistent with deposition on the inner ramp (restricted lagoon and shoal) environments. Those found in the Euphrates Formation constrained the depositional environment to the restricted lagoon and shoal environment, while the microfacies in the Jeribe Formation provided evidence for an inner ramp and middle to outer ramp belt environments. This study represents the first detailed research that focuses on the stratigraphic correlation and changes in carbonate facies with the main aim to provide a wider understanding of stratigraphy of these carbonate reservoirs throughout the northern part of Iraq

    Optimisation of tilted angles of a photovoltaic cell to determine the maximum generated electric power: A case study of some Iraqi cities

    No full text
    This work was carried out to predict both the monthly and yearly optimum tilt angle for the photovoltaic cells that are located in Baghdad (latitude 33°20′), Diyala (33°14′), and Tikrit (34°35′). These Iraqi cities were selected based on their geographical location. Mathematical models were used and programmed by engineering equation solver, EES, to find the optimum tilt angle, depending on the maximum solar power intensity obtained; the tilt angle varied within a range from 0° to 90°. The results show that the optimum tilt angle for all these cities is the same for 31°. The monthly tilt angle was different from one month to another. Keywords: Solar energy, Photovoltaic cell, Tilt angle, Optimum, Radiatio

    Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al<sub>2</sub>H<sub>2</sub>O<sub>6</sub>Si) Saturable Absorber

    No full text
    This paper presents the investigations toward the direct use of bentonite clay (Al2H2O6Si) nanoparticles to act like a saturable absorber (SA) for the Q-switched pulse operation of an erbium-doped fiber laser (EDFL). The measured results reveal that with the incorporation of bentonite clay nanopowder as a SA, an EDFL is realized with a Q-switching mechanism starting at a pump power of 30.8 mW, and a Q-switched emission wavelength was noticed at 1562.94 nm at 142 mW pump power. With an increased pump from 30.8 mW to 278.96 mW, the temporal pulse parameters including minimum pulse duration and maximum pulse repetition rates were reported as 2.6 µs and 103.6 kHz, respectively. The highest peak power, signal-to-noise ratio, output power and pulse energy were noticed to be 16.56 mW, 51 dB, 4.6 mW, and 47 nJ, respectively, at a highest pump power of 278.96 mW. This study highlights the significance of bentonite clay (Al2H2O6Si) nanoparticles as a potential candidate for a saturable absorber for achieving nonlinear photonics applications

    Q-switched pulse operation in erbium-doped fiber laser subject to zirconia (ZrO2) nanoparticles-based saturable absorber

    No full text
    In this paper, the zirconia (ZrO2) nanoparticles-based saturable-absorber (SA) have been incorporated in an erbium-doped fiber laser (EDFL) cavity for achieving a Q-switched pulse operation. The implementation of the zirconia nanoparticles-based powder on the fiber facet was accomplished using the index-matching gel's adhesion effect. The incorporation of SA in the laser cavity yielded a stable and self-starting Q-switched operation under 19.36 mW pump power that corresponded to the emission wavelength of 1557.29 nm. Additionally, it was observed that the EDFL's emission wavelength tuned from 1557.29 nm to 1562.3 nm , and the repetition rates and pulse width ranged from 61.2 to 130 kHz and 7.9 to 3.6 μs, respectively, as the pump power was increased from 19.36 to 380.16 mW. Measured experimental results reveal that at a maximum pump power of 380.16 mW, the maximum average output power, peak power, and pulse energy were noticed to be 1.17 mW, 2.5 mW, and 9 nJ, respectively. A 52 dB suppression in side bands was found at a pump power of 380.16 mW. Moreover, the stability and threshold tolerance of the EDFL has also been discussed in detail. These findings suggest that nanoparticle-based saturable absorbers have potential applications in a pulsed source, making it easier to implement in fiber cavity-based systems

    Hop Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in Ttc26

    No full text
    Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed hop mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. Hop mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The hop mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in hop mice has been suggested to lie within the Ttc26 gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within Ttc26 displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein
    corecore