534 research outputs found

    Mapping of Mature and Young Oil Palm Distributions in a Humid Tropical River Basin for Flood Vulnerability Assessment

    Get PDF
    International Conference on the Ocean and Earth Sciences 18-20 November 2020, Jakarta Selatan, IndonesiaOil palm is one of the key drivers of economic growth in some regions in the humid tropical countries such as Indonesia. Previous studies show that floods risk at particular river basins in Indonesia will increase in the future due to climate change. This will give negative impacts to the sustainable production of palm oil in the future and subsequently the regions' economy. Discussion on adaptation strategies on this matter is necessary however, the vulnerability of oil palm plantations against floods at river basin scale are still poorly understood. Field surveys for oil palms' vulnerability at such scale is costly in time, labour and resources, and making use of remote sensing is more feasible. The aim of this study is to use remote sensing in assessing oil palm vulnerability against floods at river basin scale. To achieve this objective two oil palm distribution maps which were developed using Sentinel imageries for years 2015 and 2018 allowing young oil palms to be matured under normal condition. To understand the impact of floods to oil palms, a composite of flood extents using radar scenes for years 2016 and 2017 was developed. Our results show that young oil palms are highly vulnerable to floods compared to matured ones. Only 6% of the earlier could survived floods and be matured in time, while most of the matured ones could survive

    NiCE Teacher Workshop: Engaging K-12 Teachers in the Development of Curricular Materials That Utilize Complex Networks Concepts

    Get PDF
    Our educational systems must prepare students for an increasingly interconnected future, and teachers require equipping with modern tools, such as network science, to achieve this. We held a Networks in Classroom Education (NiCE) workshop for a group of 21 K-12 teachers with various disciplinary backgrounds. The explicit aim of this was to introduce them to concepts in network science, show them how these concepts can be utilized in the classroom, and empower them to develop resources, in the form of lesson plans, for themselves and the wider community. Here we detail the nature of the workshop and present its outcomes - including an innovative set of publicly available lesson plans. We discuss the future for successful integration of network science in K-12 education, and the importance of inspiring and enabling our teachers.Comment: 11 pages, 4 figures, 2 table

    Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Get PDF
    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future

    MetaChem: An Algebraic Framework for Artificial Chemistries

    Get PDF
    We introduce MetaChem, a language for representing and implementing Artificial Chemistries. We motivate the need for modularisation and standardisation in representation of artificial chemistries. We describe a mathematical formalism for Static Graph MetaChem, a static graph based system. MetaChem supports different levels of description, and has a formal description; we illustrate these using StringCatChem, a toy artificial chemistry. We describe two existing Artificial Chemistries -- Jordan Algebra AChem and Swarm Chemistries -- in MetaChem, and demonstrate how they can be combined in several different configurations by using a MetaChem environmental link. MetaChem provides a route to standardisation, reuse, and composition of Artificial Chemistries and their tools

    Analysis of comorbid factors that increase the COPD assessment test scores

    Get PDF
    Background: The chronic obstructive pulmonary disease (COPD) Assessment Test (CAT) is a concise health status measure for COPD. COPD patients have a variety of comorbidities, but little is known about their impact on quality of life. This study was designed to investigate comorbid factors that may contribute to high CAT scores. Methods: An observational study at Keio University and affiliated hospitals enrolled 336 COPD patients and 67 non-COPD subjects. Health status was assessed by the CAT, the St. Georges Respiratory Questionnaire (SGRQ), and all components of the Medical Outcomes Study Short-Form 36-Item (SF-36) version 2, which is a generic measure of health. Comorbidities were identified based on patients’ reports, physicians’ records, and questionnaires, including the Frequency Scale for the Symptoms of Gastro-esophageal reflux disease (GERD) and the Hospital Anxiety and Depression Scale. Dual X-ray absorptiometry measurements of bone mineral density were performed. Results: The CAT showed moderate-good correlations with the SGRQ and all components of the SF-36. The presence of GERD, depression, arrhythmia, and anxiety was significantly associated with a high CAT score in the COPD patients. Conclusions: Symptomatic COPD patients have a high prevalence of comorbidities. A high CAT score should alert the clinician to a higher likelihood of certain comorbidities such as GERD and depression, because these diseases may co-exist unrecognize

    Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines

    Get PDF
    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at individual level (diversity of topics related to the researcher) and at social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On

    Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO–CeO for dye-sensitized solar cell application

    Get PDF
    There are two traditional ways to read Kant’s claim that every event necessarily has a cause: the weaker every-event some-cause (WCP) and the stronger same-cause same-effect (SCP) causal principles. The debate on whether and where he subscribes to the SCP has focused on the Analogies in the Critique of Pure Reason (Guyer, Allison, and Watkins) and on the Metaphysical Foundations of Natural Science (Friedman). By analysing the arguments and conclusions of both the Analogies and the Postulates, as well as the two Latin principles non datur casus and non datur fatum that summarise their results, I will argue that the SCP is actually demonstrated in the Postulates section of the First Critique

    Development and Application of a Whole-Genome Simple Sequence Repeat Panel for High-Throughput Genotyping in Soybean

    Get PDF
    Among commonly applied molecular markers, simple sequence repeats (SSRs, or microsatellites) possess advantages such as a high level of polymorphism and codominant pattern of inheritance at individual loci. To facilitate systematic and rapid genetic mapping in soybean, we designed a genotyping panel comprised 304 SSR markers selected for allelic diversity and chromosomal location so as to provide wide coverage. Most primer pairs for the markers in the panel were redesigned to yield amplicons of 80–600 bp in multiplex polymerase chain reaction (PCR) and fluorescence-based sequencer analysis, and they were labelled with one of four different fluorescent dyes. Multiplex PCR with sets of six to eight primer pairs per reaction generated allelic data for 283 of the 304 SSR loci in three different mapping populations, with the loci mapping to the same positions as previously determined. Four SSRs on each chromosome were analysed for allelic diversity in 87 diverse soybean germplasms with four-plex PCR. These 80 loci showed an average allele number and polymorphic information content value of 14.8 and 0.78, respectively. The high level of polymorphism, ease of analysis, and high accuracy of the SSR genotyping panel should render it widely applicable to soybean genetics and breeding

    Photocatalytic splitting of water.

    Get PDF
    The use of photocatalysis for the photosplitting of water to generate hydrogen and oxygen has gained interest as a method for the conversion and storage of solar energy. The application of photocatalysis through catalyst engineering, mechanistic studies and photoreactor development has highlighted the potential of this technology, with the number of publications significantly increasing in the past few decades. In 1972 Fujishima and Honda described a photoelectrochemical system capable of generating H2 and O2 using thin-film TiO2. Since this publication, a diverse range of catalysts and platforms have been deployed, along with a varying range of photoreactors coupled with photoelectrochemical and photovoltaic technology. This chapter aims to provide a comprehensive overview of photocatalytic technology applied to overall H2O splitting. An insight into the electronic and geometric structure of catalysts is given based upon the one- and two-step photocatalyst systems. One-step photocatalysts are discussed based upon their d0 and d10 electron configuration and core metal ion including transition metal oxides, typical metal oxides and metal nitrides. The two-step approach, referred to as the Z-scheme, is discussed as an alternative approach to the traditional one-step mechanism, and the potential of the system to utilise visible and solar irradiation. In addition to this the mechanistic procedure of H2O splitting is reviewed to provide the reader with a detailed understanding of the process. Finally, the development of photoreactors and reactor properties are discussed with a view towards the photoelectrochemical splitting of H2O

    Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    Get PDF
    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters
    corecore