
This is a repository copy of MetaChem: An Algebraic Framework for Artificial Chemistries.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151717/

Version: Accepted Version

Article:

Faulkner Rainford, Penelope Selina Margaret, Stepney, Susan orcid.org/0000-0003-3146-
5401 and Sebald, Angelika Anne-Marie orcid.org/0000-0001-7966-7438 (2020)
MetaChem: An Algebraic Framework for Artificial Chemistries. Artificial Life.
arXiv:1905.12541. ISSN 1064-5462

https://doi.org/10.1162/artl_a_00315

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

MetaChem: An Algebraic Framework for Artificial Chemistries

Penelope Faulkner Rainford1,3,4, Angelika Sebald1,4 and Susan Stepney2,4

1Department of Chemistry, University of York, UK
2Department of Computer Science, University of York, UK

3Business School, University of Hull, UK
4York Cross-disciplinary Centre for Systems Analysis

p.rainford@hull.ac.uk

Abstract

We introduce MetaChem, a language for representing and implementing Artificial Chemistries.

We motivate the need for modularisation and standardisation in representation of artificial chemistries.

We describe a mathematical formalism for Static Graph MetaChem, a static graph based system.

MetaChem supports different levels of description, and has a formal description; we illustrate these

using StringCatChem, a toy artificial chemistry. We describe two existing Artificial Chemistries –

Jordan Algebra AChem and Swarm Chemistries – in MetaChem, and demonstrate how they can be

combined in several different configurations by using a MetaChem environmental link. MetaChem

provides a route to standardisation, reuse, and composition of Artificial Chemistries and their tools.

1 Introduction

The field of Artificial Chemistry covers many rich and diverse systems [1]. Yet practitioners can struggle
to talk about specific systems in the context of the whole field. It is hard to make comparisons between
even intuitively quite similar systems. For example, consider a toy AChem that concatenates strings
of letters from the Roman alphabet; now consider another toy AChem that combines lists of integers
with values between 1 and 26. There is a clear mapping between the two sets of particles, and they use
equivalent linking rules. However, such similarities can be hidden, for example by describing one as a
string system and the other as a list system. Then, despite the underlying equivalence of the particles
and linking rules, their overall behaviour might be very different if, say, strings can decompose but the
lists cannot, or if, say, lists move in simulated space and use collisions to determine linking, while strings
interact in a well mixed tank. Are they fundamentally equivalent, or fundamentally different, and where
do the differences lie? In other cases, systems may have similar goals but very different components,
algorithms and implementations. This makes building even a basic classification system challenging.

To tackle this issue, [2] declare that an artificial chemistry (AChem) is described by the triplet
(S,R,A) a set of particles S, rules for reactions R, and the algorithm A. The particles and reaction rules
are reasonably clearly circumscribed, but all the other aspects of the system are combined in A as part
of the algorithm, covering such diverse concepts as spatiality, rule application, environmental conditions,
timing, and logging.

Despite its apparent generality, the (S,R,A) model does not accommodate all systems that practi-
tioners may want to regard as AChems. A different conceptual view of artificial chemistry may be more
inclusive of all AChem systems. Consider: an artificial chemistry is a system with minimal components
designed to use or explore the higher order emergent properties of their interactions. This conceptuali-
sation allows for AChems with purely kinetic interactions, and for ones that do not distinguish between
the R and A aspects. It also acknowledges that some systems are distinguished as different due to the
differences in A rather than S or R.

In the (S,R,A) model, many features of more recent chemistries are lumped into A. This one
component contains huge amounts of important parts of an AChem, bundled as “everything else”.
Aspects of a system that may indicate intent, or over-design towards a goal, can be lost in A.

Additionally, it is not always clear how to partition the design of an AChem into these three com-
ponents. If a system has to use an extra reaction to make membranes possible, where do we find this
in (S,R,A)? If a system is probabilistic based on a property of the environment, is that in R for the

1

ar
X

iv
:1

90
5.

12
54

1v
2

 [
cs

.E
T

]
 3

0
Se

p
20

19

Primary Focus Auxiliaries

Objects Particles Variables
Containers Tanks Environment

Table 1: Common parts of Artificial Chemistry Systems

reaction, or part of A the algorithm? If different designers make different decisions for the same feature,
it is hard to compare their systems. For example, there are now three different versions of random
boolean network-base subsymbolic AChems [4, 12, 32], and subversions within each version, These all
have essentially the same underlying S, but subtly different bonding rules R, and a variety of very dif-
ferent A used to explore different properties. Are the different results due to the changes in R or in A?
Overall, it is impossible to rigorously define and quantify differences or similarities between systems with
such a crude language of only three words.

The (S,R,A) description was a good tool when it was developed, when AChems were often still
small toy systems, or even just thought experiments. It was sufficient for the many early “proof of
concept” AChems that demonstrate that an artificial system can produce cell-like objects capable of
self-maintenance and self-replication. However, as AChems move into new realms of being used for
computation and as the basis for open-ended evolution systems, we need to be able to analyse them
more rigorously, and make comparisons between alternative models, and reuse components between
models. We need to develop a new, more sophisticated descriptive framework for artificial chemistries.

Here we present MetaChem, a formal description language for AChems, which allows us to model,
standardise, compare, and combine, diverse AChem systems. The structure of the paper is as follows.
In section 2 we discuss the objects and actions common to AChems, to motivate our design. In section 3
we introduce the basic graph structure of MetaChem, with the various node and edge types that can be
used to construct an AChem definition. In section 4 we demonstrate how this graph structure can be
used to define an AChem at different levels of description. In section 5 we describe the internal structure
of the executable nodes, showing how the graph forms a program to execute an AChem; a mathematical
definition is provided in appendix A. In sections 6 and 7 we recast two widely differing AChems from
the literature into MetaChem, to demonstrate its breadth of applicability. In section 8 we combine these
two widely AChems to produce a family of nested AChems, to demonstrate to combinatorial power of
MetaChem. We conclude with a discussion of future extensions to MetaChem to allow dynamically
changing graphs.

2 Properties of Artificial Chemistries

There are axiomatic concepts that we build on in the field of artificial chemistries. AChems start with
small components interacting to generate our systems. Analysis tends to focus on the emergent properties
and behaviours of these systems. To differentiate an AChem from an Individual Based Model [8], we
add requirements for simplicity (easy to describe) and tractability (easy to compute) in our particles and
their interactions. The intention is that these systems work over large collections of individuals and over
long time periods, although most are currently limited by computational capability.

From these concepts we identify many common elements of AChem systems, and use these as the
basis for a bottom-up approach to systematic modularisation of AChem systems. Individual particles
and their interactions are our primary focus. These are present throughout AChem systems. Systems
also have other variables, properties and values. Much like in real chemistry, we separate the description
of the “glassware” from our consideration of its particle contents. We separate these other values and
properties into an environment. We can have multiple containers in our systems, which allow us to isolate
particles and move them, analogous to the “beakers”, “tubes”, and “valves” comprising the “glassware”,
or membranes and compartments in biological cells. These components comprise the “things” in our
systems, Table 1.

There are also commonalities in the algorithms of AChems (and often their implementations) that we
abstract out in our framework. Control flows, related to time and generations, occur in most systems:
some systems update across all objects in the system at once; others continuously update objects at
random. If we can identify the modularised control that produces these timing systems, designers could
switch between them. This would then allow designers to focus on the new AChem-specific features of
their design, whilst exploiting pre-existing elements to implement less unique aspects of their systems.

We define our control flow in relation to how we divide our “things”. We modify particles, similar

2

System

Containers

Particle Containers Environment

Tank Sample

Particles

Composites

Atoms

Values

Control

Action Administrative Nodes

Control Admin

Decision

Particle Admin

Sampler

Observer

Termination

Information Flow

⇐⇒

Control Flow
~

w

w

w

�

Figure 1: Conceptual structure of modularisation of Artificial Chemistries

to reactions and interactions in chemistry. We record observations of our system. We modify our
environment, such as by changing the temperature of the system. We move particles around our system.
We decide which of these things we should do next. These control flow actions form the building blocks
of our MetaChem.

3 Modularisation: Components of an Artificial Chemistry Sys-

tem

We arrange these concepts into the structure shown in Figure 1, which we use to build a graph-based
formalism. We have the overarching concepts of the System, made up of the elements formalised as
graph nodes (Containers, Control), and as graph edges (Information Flow, Control Flow).

Control items are static nodes in the graph: their location and connectivity is defined at the start
of a “run”, and remain unchanged as the AChem executes. (Future versions will support dynamic
connectivity; see §9.2.3.) These control nodes are connected by Control Flow edges, which together
define the system’s algorithm.

Containers are also static nodes in the graph. They map to (“contain”) the dynamically changing
particles and environmental values in the system.

Information Flow edges allows control to influence the connected containers’ states (that is, contents).
Information can flow in either direction along an edge: read or pulled from containers’ states to the control
node, and pushed from the control node to update containers’ states.

These general concepts are captured by different types of graph nodes (Figure 2), and types of graph
edges (Figure 3). We can use these to define graphs that provide a view of our systems. We can provide
different views using graphs at different levels: from a high-level overview, then by expanding nodes
down to levels with greater detail (section 4).

3.1 Particles

The most fundamental parts of our systems are the particles. These and their emergent properties
and behaviours are the focus of our studies. These can usually be split into two subsets: atoms and
composites. Some AChems may have only atoms and due to lack of physical bonding rules may not seem
to form composites. Others may be symbolic and assume that all particles are complex and that all the
symbols represent composites.

Atomic particles: the most basic particles; they can not be divided or broken down into smaller
parts. Any internal structure of the atoms [5] is indivisible.

3

Element Description

Containers

T Tank: particle container

S Sample: particle container of editable particles

V
Environment: container of non-particle variables and information in the sys-
tem.

Control

s Sampler: Information administration node that moves particles between
containers

o Observer: Information administration node that observes particles in con-
tainers, and saves summary statistics into the environment

d
Decision: Control administration node makes decides on control flow path
based on the state of particles and the environment

a
Action: Control node that performs actions on particles based on state of
particles and environment

Termination: Control node where processing terminates

Figure 2: Graph node types, and their graphical representation, used in MetaChem. The initial control
node (typically a sampler node to load some initial state) is identified with a double border, see figure 6.

Example: Atoms can take many forms: characters in a string chemistry, instructions in an automata
chemistry, or symbols that are not the ’one’ in a one-to-many symbolic production rule in a symbolic
chemistry.

Composite particles: these are made of combinations of atoms. In symbolic AChems the atoms
making up a composite particle may be hidden or unknown.

Example: Composites would be strings in string chemistries, programs in automata chemistries, or
symbols that result from many to one rules in symbolic chemistries.

3.2 Container Nodes

Container nodes are partitioned into two subtypes: Particle container nodes and Environment container
nodes.

Particle container nodes: mappings that take the node and the state of the system, and return the
multiset of particles in that container at that state. When the system is in a particular state, the set of
mappings of all the containers forms a partition of all the particles in the system.

There are two types of particle container nodes: Samples and Tanks. Tanks are protected containers,
in that particles inside them can not be edited. Particles in tanks can be moved in and out, but cannot
be changed; any changes must be made over samples, so that the designer must explicitly decide what
will be changing.

Examples: A beaker being used for an experiment; a pipette; a petri dish.

Environment container nodes: similar to particles nodes, except that they contain non-particle
objects and information in the system. The system can have multiple environments, to make reference
to the things in the environment easier. For example, one might want to store a time record separately
from summary statistics or log information; one might want different local temperatures for different
containers. These are all accessed via some mapping from the node and state of the system to the
dynamic information and objects.

Examples: Temperature readings; Bunsen burner; stirrer; observation log.

4

Container nodes are never directly connected to each other. All communication between them is
mediated by control nodes. This means we always have control over the movement, similar to having
valves and drip taps installed in normal chemistry glassware. We can allow things to flow through these
controls freely, but we always have the option to restrict or stop any flows.

3.3 Action Nodes

Action nodes, a kind of Control node, are where we actually modify particles through movement, linking,
decomposition or any other change. Actions can modify particles only in a sample. This means we always
need to designate which particles we are changing before change occurs. This protects the particles in
tanks.

Examples: Concatenate strings; form chemical bond; execute an automata chemistry program string

3.4 Admin Nodes: sampler, observer, decision

Admin nodes, kinds of Control node, are where particles and environments are moved and inspected.

Sampler: Information Admin nodes that move particles between particle containers (tanks and sam-
ples).

Example: Extracting a sample with a pipette for testing; choosing a neighbour to combine with the
current particle.

Observer: Information Admin nodes that observe particles and/or environment state of other nodes.
They do not change any internal properties of particles or move them between containers. They can
only see particles, derive information such as summary statistics, and modify the environment.

Examples: Taking notes in a log book; updating time in a discrete time system; updating the
number of particles in the system.

Decision: Control Admin nodes used to change control flow. This is the only place control flow can
branch; information the node has read from connected containers.

Examples: Triggering an event; continuing to the next phase; looping over a process; completing a
time step; deciding to take a beaker off the heat.

3.5 Termination Node

Termination nodes, a kind of Control node, are where execution of the AChem is explicitly terminated.
For an executable system, this implies the need for non-volatile memory for at least some containers, so
that their contents can be inspected after a run; this is an implementation issue.

Not all graphs need to have an explicit termination node: we can define an “open-ended” AChem
that implicitly runs forever.

3.6 Edges

The nodes of our graphs are connected by edges capturing two kinds of relationship, Figure 3.

Information Flow: The first relationship marks movement of information between nodes. These
relationships are always between container nodes and control nodes. Container nodes cannot directly
transfer information; the same is true of control nodes.

Example, Figure 4: An action node reads information from a sample, pulls a subset out of the
sample (such as removing two particles to combine), performs its processing (such as combining the two
particles), and then pushes (writes) the results back into the sample.

5

Element Description

Information Flow

Read: allows reading of information from source container node (shown) in
to target control node local state.

Pull: allows pulling of information out of source container node (shown) by
target control node. Also allows reading from the source container.

Push: allows pushing (writing) of information from source control node local
state into target container node (shown). Also allows reading from the target
container.

Control Flow

Solid arrow between control nodes indicates control flow in system.

Figure 3: Graph edge types, and their graphical representation, used in MetaChem

a S

Figure 4: A combination of a read, a push, and a pull edge, abbreviated as a double-headed information
edge

a

S

s

T

d ×

next process

Figure 5: Example of a graph depicting actions and decisions. Control starts in the action node a (the
double-edged icon indicates it is the initial node in the system), which can pull and push particles from/to
the sample node S. Next, control moves to the sampler node s, which can pull particles from the sampler
node S, and push particles to the tank node T. Next, control moves to the decision node d, which has
two control edges coming out of it. Based on the working of the decision node, using information it reads
from the tank node T, control either loops back to the action node a, or continue on to the next process
in the system.

Control Flow: Our second relationship type marks the movement of control. These edges are between
control nodes, and indicate what order we visit the control nodes. For most control nodes there can be
only one outgoing control edge. The exception is decision nodes, whose purpose is to provide a branch
point in control flow.

Example, Figure 5 shows the use of a decision node to control looping. An action node links
particles in the sample (as in the example shown in figure zreffig:infoedge). Next he sampler node moves
the content of the sample container to the tank. Then the decision node checks if the system is finished
with linking; if not, control loops back to the action node, to continuing linking, otherwise control
continue on to the next process in the system.

3.7 Graph as an Executable Algorithm

We have so far discussed separating out the parts of an AChem into nodes and forming a graph using
information and control flow edges between these nodes.

This graph is an executable script; it can be executed in software [19]. During execution we have a
single execution pointer1 on a control node that executes a transition function, then follows the control
edges, moving around the graph executing the transitions defined in the control nodes (see section 5 for
how the internal processes of nodes are defined).

1Later versions might support multiple threads of control.

6

In this version a graph is a static object that is defined before execution and remains unmodified by
execution. This is the initial static graph form of MetaChem.

Information flow edges can be seen as directing input and output of the nodes. In a way container
nodes act like “blackboard systems” [9], being constantly modified and updated by “experts”, the con-
trol nodes. Samples exist to section off part of a container and thereby to control which parts of our
“blackboard” each of our “experts” can edit. In terms of a physical blackboard, they allow us to draw a
box around the content of our tank and write “Do not erase!” next to it.

4 Descriptive levels

The MetaChem graphical formalism allows a modular description of an AChem in term s of its subcom-
ponents. The level at which we define these subcomponents gives the descriptive level of our graph.

4.1 Expanding and summarising

Moving between descriptive levels may expand nodes into subgraphs, or summarise subgraphs as nodes.
In the case of expansion, the resulting subgraph can still be described in terms of the component

functions of the original single node. Such a graph can therefore be summarised in a well-defined manner
as a single node.

Starting with an arbitrary subgraph and summarising it into a single node is in general harder. If the
subgraph we wish to describe as a single node can be broken up into the different component functions,
then we can summarise it as a node with these functions. Failing this, we summarise as follows:

• All information needed in the subgraph is read in during the node’s read phase, so the new node
has all the read connections to containers in the larger graph that exist in the subgraph.

• Any samples and variables are also taken; in some cases where there is sampling from a tank, this
will need to occur in a separate sampler node. This will give all the container connections needed.

• We then perform all processing in the subgraph in a single action node, including observations.

• Pushing samples to tanks requires another separate sampler node.

So in the worst case we can summarise any subgraph as at most three nodes.

4.2 Node names

With these different levels and complex systems and multiple nodes of the same type, the basic single
letter tags used before are not sufficient. In order to distinguish the different nodes, we use tags with
two-part names.

For containers we write X:label, where X ∈ {T,S,V}, and for control nodes we write x:label, where
x ∈ {s,o,d,a, t}. The type tag, X or x, is part of the overall name2. The label is a non-empty string of
alphanumeric characters and underscores.

We can use the same label for different types of containers, for example: T:particles and S:particles
for a tank and a sample container of particles, or S:sample and s:sample for a sample container and its
control node. In the first example we are labelling based on sort of content, which is the same for both
the tank and the sample. In the second we label the function in the system, the container contains a
sample and the sampler takes a sample. These labels can be used in the same graphs for different nodes,
as the type is part of the node name.

Container nodes with the same name in a graph represent the same node: they may be drawn
separately for clarity.

Control nodes with the same name are not necessarily the same node, but do apply the same process
to the data they read in: they have identical internal functions. However, they read in from different
containers given by the information edges, and transition to a different node after they are completed,
given by the control edge. Since they have no memory, control nodes with the same name and the same
information and outgoing control edges are equivalent nodes, and could be replaced with a single node.
Since the node receives no information directly from the previous control node, and can have multiple
incoming control edges, these edges are not important for node equivalence.

2A form of “Hungarian” notation.

7

4.3 StringCatChem: an illustrative toy example

To illustrate the use and power of MetaChem at different descriptive levels, we introduce StringCatChem,
a “toy” AChem. StringCatChem is simple and small enough to run by hand, and can be fully and
succinctly decomposed into its parts. We use MetaChem to describe full scale AChems in later sections.

In StringCatChem the atoms are character strings, and composites are formed by string concate-
nation. StringCatChem is situated in a collection of well-mixed tanks. When a string is selected for
reaction, it is checked if it contains any identical adjacent letters; if so it is split between them. If not, a
second string is selected at random from the same tank, and the strings are concatenated. The split or
combined strings remain in the same tank. In a separate operation, strings are also randomly transferred
between tanks.

StringCatChem is very simple, just forming random stings with no double letters. It will continue
to act until all the strings have matching letters at the starts and ends, or there is one large string.
After this the system will not change, as any concatenation will be split apart again before another
concatenation can occur. StringCatChem is therefore not a good choice of AChem if one wishes to study
interesting behaviours such as replication, open-endedness or the transition to life. However, it makes a
good illustration of MetaChem: the whole system can be implemented with four container nodes and 13
control nodes.

4.4 Macro Level

The Macro level view provides an overview of the entire AChem. It rarely deals with individual values,
atoms or interactions in the AChem. Even a generation or time step at this level is just an update
process.

Macro-level StringCatChem

Figure 6 shows the macro level description of StringCatChem. The start node is the control node with
a double boarder. In many systems, for example that start with an initial set of particles to be loaded
into the system as here, the start node will have no incoming control flow edges.

• StringCatChem starts with the s:load node loading a set of strings into the set of tanks.

• The observer o:time then increments the time variable.

• The action a:process is responsible for the splitting and concatenation reactions that occur in the
individual tanks. This is expanded later in Figure 8.

• The observer o:reactions then increments the reaction variable, to keep track of the number of
reactions done in this timestep.

• The decision d:updated checks if the update cycle is complete (if enough reactions have been
performed). If not complete, it moves control back to a:process. If complete, it moves control on
to s:transfers.

• The sampler s:transfers moves particles between tanks, then loops back to o:time for the next
timestep.

This description gives us a high-level overview of the main operating loops of the system and of
the set of significant processes. We can see that there is a random unsynchronised update. Timing is
discrete, and there are multiple tanks with movement between them. These are the kinds of elements
and properties of a system that should be visible at the macro level.

This is the macro-level description of the system; it is an open ended system with no inherent
termination point. For implementation purposes however we might add an explicit V:time dependant
termination, Figure 7. Adding explicit termination to an open-ended system is usually done by adding
a termination node to the decision at the end of the update loop, normally with the decision based on
some variable, such as a time or generation variable, or anything else the designer wants to use to trigger
termination of the run.

There is also a textual representation form for these graphs, which can be used for defining and
executing them. An example of this textual form can be found in [19].

8

T:strings

T:tanks

o:time

V:time

a:process

T:tanks V:reactions

o:reactions s:transfers

T:tanks

d:updated
s:load

Figure 6: Macro level description of (open-ended) StringCatChem.

T:strings

T:tanks

o:time

V:time

a:process

T:tanks V:reactions

o:reactions s:transfers

T:tanks

d:updated
s:load

Figure 7: Macro level description of explicitly-terminating StringCatChem.

9

T:tank

T:tanks

S:composite

T:tanks

d:decomp

T:tank

s:sampler

s:sampler

S:composite

a:split

a:concat

s:return s:commit

T:tank

T:tank
S:composite

s:choose

Enter

a:process

Exit

a:process

Figure 8: Micro level description of the a:process node of the StringCatChem.

4.5 Micro Level

The Micro level view provides a focus on the actual action and effects on different particles and envi-
ronments in the system. It can be thought of as the algorithm or pseudo-code level description of the
AChem.

Micro-level StringCatChem of a:process

As an example we expand the a:process node from figure 6 into a graph showing the internals of how
this action occurs, Figure 8.

In summary, we choose a tank, then choose a particle string from it. We decide (based on the presence
of a double character) whether to decompose the string or not. In one case we split the string, in the
other we sample a second string and concatenate them. The resulting particle string(s) are then returned
to the same tank the original came from, and the tank is returned to the collection of tanks. In terms of
the graph, this is described as:

• sampler s:choose pulls the contents of a partition from the set T:tanks and pushes its contents into
T:tank.

• s:sampler pulls a particle from that T:tank and pushes it to S:composite

• d:decomp decides if the particle can be decomposed or instead should be concatenated with another
particle

• if the decision is to decompose, control moves to a:split, which pulls the particle from S:composite,
splits it, and pushes the resulting two particles back to S:composite

• if the decision is not to decompose, control moves to s:sampler, which pulls another particle from
tank T:tank and pushes it to S:composite; control moves to a:concat, which pulls the two particles
from S:composite, concatenates them, and pushes the resulting particle back to S:composite

• either path results in control being at s:return, which pulls the resultant particle(s) from S:composite
and pushes them into T:tank

• finally, s:commit pulls the entire contents of T:tank and pushes it back into the same partition of
T:Tanks which it originally come from.

4.6 Physics Level

The Physics level view deals with the hard-coded details of implementation. It is the designer’s choice
what is the lowest level of detail needed; anything the designer considers to be unchangeable occurs at
this level. This is the full program code level description, defining the internal processes of the control
nodes.

Physics StringCatChem of a:split

As an example we expand the a:split node from Figure 8, which splits a string that contains a double
character. In our implementation (available at github.com/faulknerrainford/MetaChem.git), this is defined
in the MetaChem package of Python, by subclassing the ControlNode class to provide the specific

10

1 def transition(self):
2 self.read()
3 if self.check () < random.random ():
4 self.pull()
5 self.process ()
6 self.push()
7 pass

Listing 1: Transition function as defined in ControlNode class

1 class StringCatSplitAction(node.Action):
2

3 def __init__(self , writesample , readsample , readcontainers=None):
4 super(StringCatSplitAction , self).__init__(writesample , readsample , readcontainers)
5 self.sample = None
6 pass
7

8 def read(self):
9 self.sample = self.readsample.read()

10

11 def check(self):
12 return super(StringCatSplitAction , self).check ()
13

14 def pull(self):
15 self.readsample.remove(self.sample)
16

17 def process(self):
18 doubleindex = [i for i in range(0, len(self.sample) -1) if self.sample[i] == self.sample[i+1]]
19 index = random.choice(doubleindex)
20 self.sample = [self.sample [0: index], self.sample[index :0]]
21 pass
22

23 def push(self):
24 self.writesample.add(self.sample)

Listing 2: a:split node as described in Python using StringCatSplitAction. Action is a subclass of
ControlNode class which contains the transition function. All aspects of Action are overwritten in
StringCatSplitAction

implementation. The ControlNode class defines the action of any control node in terms of components
of the overall transition function, Listing 1 (see Section 5 for details).

The specific node subclass provides an implementation for each of these components in order to define
the required processing, Listing 2. The specific implementation is defined as follows:

read() Read the contents of the attached container(s) (readsample) into local state. Here readsample
is S:composite, defined by the graph topology on system setup. The local state is self.sample.

check() Check that we want to continue processing. Here we use a default check action that returns 0,
so the action will always occur. All checks needed have already been made in the previous decision
node d:decomp (figure 8), so the action here is deterministic.

pull() Pull the relevant particles out of the attached container(s). Here the sample should contain only
one particle, so we then remove that particle from S:composite, using the container’s remove()

function. We specify which particle to remove in terms of the local state of the control node; hence
that particle must have been read from the attached container earlier.

process() Process the material in the local state. Here, process function finds the double letter, and
splits the string at that point into two particles/strings, overwrite the internal sample state.

push() Push the relevant particles into the attached container(s). Here we push the two split strings
into the writesample container, using the container’s add() function. Here writesample is
S:composite, defined by the graph topology on system setup. The graph topology could later
be modified so that writesample referred to a different container, without having to change the
implementation here.

In the case of most processes the lower level instructions will use at least some default functionality;
in this case it is the check function. In the case of other sorts of control nodes such as samples it might
be the process function. These defaults are defined in the relevant superclass code.

11

All interactions with containers are mediated through the interface of the containers’ built in read(),
add() and remove() functions. This allows the control node design to remain independent of the exact
implementation of the containers. With this an AChem designer can build and test a system on the small
scale using easy-to-manage list containers, and when they wish to scale up, they can reimplement the
containers to use a database, without having to change the graph or the control nodes’ implementations.

4.7 Abstraction levels

The abstraction levels are not restricted to these three levels: there can be systems made up of systems
[18] defined using additional levels. It is up to the designer or modifier of the AChem to choose the
abstraction level for what is needed and useful in order to properly express and illuminate a particular
system.

5 Static Graph MetaChem

Here we describe the internal structures of the nodes, in terms of the actions they perform. We provide a
mathematical specification in appendix A. This is Static Graph MetaChem: none of the actions described
here change the structure of the graph. Future versions will include actions that can dynamically change
the structure of the graph as the algorithm executes.

5.1 Control nodes and edges

The control flow defines the AChem’s algorithm: evaluate the current control node’s definition, then move
to the next control node, and repeat. In the implementation, it executes the current node’s transition
function, which (potentially) changes state and then moves on to the next node; by traversing the graph
in this manner it performs the relevant computation. The is no automatic termination rule on these
systems as chemistries don’t technically ever stop but for a particular algorithm we can define a number
of transitions we will perform before stopping. We could also provide a control node with no outgoing
edge. This would force termination.

All control nodes have the same basic structure for their state transition function, defined through
component transition functions: read(), check(), pull(), process(), push(), next(), executed sequentially:

transition = read # check # pull # process # push # next

where # indicates sequential ordering of function application from left to right.
Each of these component functions plays a different role in the transition and thus uses a different

aspect of the state.

read Collect information from (connected) external containers into temporary local containers, for used
by the following functions. This action does not modify the external containers; it copies the
relevant particles and values into temporary local state.

check Generate a threshold probability value p from local state information. This p is used to determine
if the rest of the component functions (the ones that actually alter containers’ contents) occur. In
the current implementation, it generates p from its local state, then generates a uniform random
number r; if p < r, execution continues, otherwise it moves directly to the next node. The shape
of p can be defined such that the probability of the process follows the desired distribution.

pull Remove particles and change information in external containers. Any information so removed
must already been copied to local containers by the earlier read(), where it is available for local
processing; such a read followed by pull has the effect of moving the particles or information.
However, read information does not have to be pulled: it can be copied, rather than moved.

process Perform the main computation for the node. This is where the “chemistry” happens. It
modifies the state of local particles and variables, including creating new particles and variables
and destroying old ones.

push Copy particles and values from local state into external containers.

12

x C

DB

A

x
C

DB

A
A
B D

C

x

A
B D

C

x
C

DB

A/A∗

A
B D

C

y

x
C

DB

A/A∗

E

x
C ∪ E

DB

A/A∗

Initial state:

Read():

Check():

Pull():

Process():

Push():

Figure 9: Summary of movement and processing of information done by transition functions in a node

next Wipe the local state and move control to the next node. All control nodes except decision nodes
have exactly one outgoing control edge, so the move is deterministic. For decision nodes, process
designates the target node, and stores it in local state. This is used by next to move to the chosen
next node.

These component functions operate on the node’s local state, which exists only for the duration of
the overall transition. Local particle containers and local environment containers are destroyed once the
transition function is completed, so control nodes have no lasting state or memory. Any information
used by a control node must come from containers at the start of a transition by using read(); any local
information or objects that need to remain in the system must be written back to containers by push().

These functions are summarised in Figure 9 and discussed in the context of specific node types below.

5.2 Control node subtypes

Control nodes are partitioned into subtypes: action, decision, sample, observer, termination. We distin-
guish these node subtypes by requiring some of their transition function components to have no effect
(to be the null operation, or the identity transformation), or by limiting the types of containers they
can interact with during the transition, Table 2. The constraints on these subnodes help control the
complexity of the system definition.

13

action decision sample observer termination

read X X X X

check X

pull X X X

process X X X

push X X X

Table 2: Transition functions used by different types of control nodes; unchecked functions always use
their default behaviour

action decision sample observer termination

tank X

sample X X

environment X X

Table 3: The container nodes that can be modified by a control node (by push or pull); read can be
performed on any container

Action : read in information, check if an interaction occurs, process the particles in the system for
the reaction to happen. This node type is not limited in which transition functions it executes, but
it is limited in which containers it can push() to, Table 3. The limit to modify only samples allows
parallelisation, and encourages controlled modification. The designer is required to consider what they
wish to modify before they modify it, as they must first sample it from the tanks.

Decision : process the information from its containers and return a choice of the possible next control
nodes. It is limited to read() and process(), so it cannot change the contents of any of the containers.

Sampler : move particles between containers. It does not compute or process information, and it does
not modify any particles or environment variables. It is therefore limited to read(), pull() and push().

Observer : observe but do not modify particles; modify the environment. It can read() to view
containers; it can pull() to edit only environment variables. It can process(), to compute summary
statistics and changes to the environmental variables, and it can push() to commit those changes back
to the environment.

Termination : terminate execution. It does nothing, so does not use any of the component transition
functions.

5.3 Container nodes

Container nodes are interfaces between control nodes and the things in the system, rather control elements
themselves. We prevent any modification of objects inside container nodes, to preserve this separation.
Every container node has three functions forming its uniform interface: read(), add() and remove().
These are used respectively by the read(), push() and pull() functions of control nodes. Internal data
can be organised in any way the node designed sees fit as long as it provides these three functions. An
implementation could move from using a list to a database by changing only the container, and not need
to make any change to control nodes using it.

Container nodes are partitioned into two subtypes: Particle container nodes and Environment con-
tainer nodes.

Particle container node: contains a multiset (bag) of particles; the contents of this multiset changes
as the AChem executes. The state of all the containers in the system partitions of the particles in the
system. There are two sub types of particle container nodes: Samples and Tanks. Tanks are protected
containers. Particles in tanks can be moved in and out but cannot be changed in the tank; any changes
must be made in Sample containers, so the designer has to decide what will be changing.

Example : A beaker being used for an experiment, a pipette, a petri dish.

14

Environment container node: contains non-particle objects and information in the system. The
system can have multiple environments, to make reference to the things in the environment easier. For
example, one might want to store a time record separately to summary statistics or log information. These
are all still accessed via a mapping from the node and state of the system to the dynamic information
and objects.

Example : Temperature readings, Bunsen burner, stirrer, observation log.

The limits on access to containers placed on control nodes is given in Table 3. Any control node can
read() any container node (information is always knowable). However, we limit the modification of
containers to certain types of control nodes to make it easier to track activity in the system. This should
also encourage limiting the scope of individual nodes to a basic action that may be reusable.

5.4 Examples from StringCatChem

5.4.1 Local state

Here we give examples of the behaviour of some of the control nodes in StringCatChem. These involve
reading particles and environment variables into local state. This local state is modelled (see appendix,
eqn.31) as a pair of mappings, the first from particle (tank and sampler) node names to contents, the
second from environment node names to contents.

5.4.2 Sampler node

Here we describe the micro level s:sampler from Figure 8. Sampler nodes have read(), pull() and push()
functions, Table 2. In this example, this sampler randomly selects a single particle from a tank to move
to a sample container.

read(): Read the contents of the containers attached by information edges. The node s:sampler has
two read edges, one to T:tank (also a pull edge) and one to S:composite (also a push edge). After the
read, the local state Λ has a copy of the states of these two particle containers (defined in the global
state G); there are no connected environment containers, so it has an empty environment component:

G = ({S:composite 7→ Σ,T:tank 7→ T, . . .}, {. . .})

Λ = ({S:composite 7→ Σ,T:tank 7→ T}, {})

where Σ is (a copy of) the particles in S:composite, and T is (a copy of) the particles in T:tank.

pull(): Select a random particle τ from T , and delete (pull) the corresponding particle from the external
container T:tank3.

G = ({S:composite 7→ Σ,T:tank 7→ T \ {τ}, . . .}, {. . .})

Λ = ({S:composite 7→ Σ,T:tank 7→ T}, {})

push(): Push the selected particle τ to the S:composite sample.

G = ({S:composite 7→ Σ ∪ {τ},T:tank 7→ T \ {τ}, . . .}, {. . .})

Λ = ({S:composite 7→ Σ,T:tank 7→ T}, {})

On moving to the next control node, the local state Λ is destroyed, with the overall result that particle
τ has moved from the sampler to the tank.

5.4.3 Observer node

Here we describe the macro level o:time from Figure 6. Observer nodes have read(), pull(), process()
and push() functions, Table 2. In this example, this basic observer increments a variable representing
time.

3For notational simplicity in these examples, we assume here that containers contain sets of particles; in the full
formalism, the containers contain multi-sets (bags) of particles (appendix A.2), allowing multiple instances of a given
species.

15

read(): Read the contents of the containers attached by information edges. The node o:time has one
read edge (also a pull and a push edge), to the environment container V:time. After the read, the local
state Λ has a copy of the state of this environment container; there are no connected particle containers,
so it has an empty particle component:

G = ({. . .}, {V:time 7→ V, . . .})

Λ = ({}, {V:time 7→ V })

where V is (a copy of) the environment in V:time. Here, the environment contains a single variable,
representing the time.

pull(): As our V:time container only contains a single variable our pull function clears the V:time
container.

G = ({. . .}, {V:time 7→ ∅, . . .})

Λ = ({}, {V:time 7→ V })

We remove the value from the attached container, because interactions with the container are limited
to read(), add() and remove() functions; if we wish to update or modify a variable we must read it in,
remove it from the container, then add the new version. If we simply push/add the new version without
clearing the old one, behaviour is undefined and will depend on implementation.

process(): This observer is a counter observer : it increments a single variable. In this case the variable
is time and the increment is 1. This is performed on the variable V in local storage.

G = ({. . .}, {V:time 7→ ∅, . . .})

Λ = ({}, {V:time 7→ V + 1})

push(): Push the incremented local variable back out into the V:time container for storage.

G = ({. . .}, {V:time 7→ V + 1, . . .})

Λ = ({}, {V:time 7→ V + 1})

On moving to the next control node, the local state Λ is destroyed, with the overall result that the
environment variable V:time has been incremented by one.

5.4.4 Action node

Here we describe the micro level a:split from Figure 8. Action nodes can use all five component transition
function. In the case of a:split we explicitly use some of these functions, and use the default definition
of the others.

read(): The a:split action node has an information edge to only one other node, in the form of a read,
pull and push edge between it and S:composite. At this stage S:composite holds a single particle string,
which contains a double letter. This string is read into the local particle container.

G = ({S:composite 7→ {“prexxpost”}, . . .}, {. . .})

Λ = ({S:composite 7→ {“prexxpost”}}, {})

check(): In this particular system reactions are deterministic, so we use the default behaviour of the
check function, which is to return 0. So the check test is true, and the rest of the action happens.

pull(): Delete (pull) the string from the S:composite node.

G = ({S:composite 7→ ∅, . . .}, {. . .})

Λ = ({S:composite 7→ {“prexxpost”}}, {})

16

process(): Process the contents of the local state. Here, divide the string at the double letter, and
store the two resulting strings in the local particle state.

G = ({S:composite 7→ ∅, . . .}, {. . .})

Λ = ({S:composite 7→ {“prex”, “xpost”}}, {})

push(): Push the resulting strings back into the S:composite sample node.

G = ({S:composite 7→ {“prex”, “xpost”}, . . .}, {. . .})

Λ = ({S:composite 7→ {“prex”, “xpost”}}, {})

On moving to the next control node, the local state Λ is destroyed, with the overall result that S:composite
sample node now contains the split strings.

5.4.5 Decision node

Here we describe the micro level d:decomp from Figure 8. Decision nodes use two of the five transition
functions. They do not change the state of any of the containers (so no pull or push). They just read
containers, and compute (process) the next control node to move to.

read(): The d:decomp decision node has a read edge to between it and S:composite. At this stage
S:composite holds a single particle string, which may or may not contain a double letter. This string is
read into the local particle container.

G = ({S:composite 7→ {“p1p2..pn”}, . . .}, {. . .})

Λ = ({S:composite 7→ {“p1p2..pn”}}, {})

process(): This function performs the computation that makes the decision. It returns one of the
possible next control nodes, s:sampler or a:split}, and stores this in the local state for the next function
to access.

G = ({S:composite 7→ {“p1p2..pn”}, . . .}, {. . .})

Λ = ({S:composite 7→ {“p1p2..pn”}}, {V: local 7→ c})

where

c =

{

a:split if ∃ i ∈ 1..n− 1 | pi = pi+1

s:sampler otherwise

On moving to the next control node, c, the local state Λ is destroyed, with the overall result that
no containers have changed state, and the control node is the relevant one for the string in container
S:composite.

6 Jordan Algebra Artificial Chemistry

MetaChem can be used to design new AChems, and to describe existing AChems. Here we use MetaChem
to describe our earlier Jordan Algebra Artificial Chemistry, JA-AChem [6]. We choose this as one
extreme of an artificial chemistry. It is subsymbolic in that its bonding properties arise from the internal
structure of its particles, and is designed to work at the level of atoms. It has both a linking action and
a destructive action, which makes it more complicated in terms of algorithm than the StringCatChem
already described.

6.1 Overview of particles and linking

Hermitian matrices provide a rich variety of properties such that we can use them as prime material
for creating a subsymbolic AChem [5], where emergent properties of the matrices dictate the linking
capabilities/probabilities of a particle, and the algebra gives the structure of the composite particles.
Here we give a condensed overview of the properties used to form atoms and composite particles; in the
next section we use these definitions in the overall MetaChem description of the JA-AChem.

17

6.1.1 Definitions and properties

The complex conjugate of the transpose of a matrix is written as M†. A matrix M is Hermitian if it is
equal to the complex conjugate of its transpose: M =M†.

The Jordan product of two square matrices is

A ◦B := 1

2
(AB +BA) (1)

Hermitian matrices are closed under the Jordan product [15].
The eigenvalues λ and eigenvectors v of a square matrix M are solutions to (M − λI)v = 0. An nD

matrix has n (possibly degenerate) eigenvalues, and n corresponding eigenvectors. The eigenvalues of a
Hermitian matrix are all real.

6.1.2 Atoms

The atoms in the Jordan Algebra AChem used here are specific 3× 3 Hermitian matrices. The atom set
is:

A =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 : xij ∈ {±1,±i,±1± i, 0}

(2)

We use the eigenvalues of the matrices to define linking properties.
There are 14574 atoms, with 66 different sets of eigenvalues. We have many options and many

different sorts of operations and linking behaviours are possible.

6.1.3 Composite particles

We use unit eigenvectors v̂i and their corresponding normalised eigenvalues µi to define linking proba-
bilities:

µi = λi/
∑

λj (3)

We normalise the eigenvalues to ensure sensible linking probabilities of larger composites. (The sum of
eigenvalues equals the trace of the matrix, which is required to be non-zero in this system.)

We defined the alignment of two eigenvectors (one from each particle’s matrix) as:

aij =
(

1− 1

2
((v̂i.v̂j) + 1)

)

(4)

Alignment uses the dot product between unit vectors, which is the cosine of the angle between them.
Hence the alignment has a value between 0 and 1, being 0 if the vectors are parallel and 1 if they are
anti-parallel.

When linking two particles A and B, we calculate the normalised eigenvalues µAi
, µBj

and the
corresponding unit eigenvectors v̂Ai

, v̂Bj
. We calculate all the alignments between pairs of eigenvectors,

one from each particle. We choose the highest value alignment (most anti-parallel eigenvectors) as the
linking eigenvectors (i, j).

We calculate the strength of this alignment, using the corresponding eigenvalues:

sAiBj
= N (µAi

− µBj
) (5)

where N (x) is the value of the probability density of the normal distribution (µ = 0, σ = 1) at x. This
will give a probability of linking that is larger for more similar normalised eigenvalues. The normal
distribution is not the only option we could use here; we investigate other options in [7].

We calculate the probability of linking based on the strength of the link and its alignment.

pAB = sAiBj
aAiBj

(6)

If the link is formed, the resulting composite particle is the Jordan product of the components.

18

T:Atoms

T:Tank

s:Sample

T:Tank

S:Reactant

a:Link s:Return o:Mid Check

V:Time

s:Choose

T:Tank

S:Reactant

s:Return o:End Check

V:Time

a:Decomps:Load

Figure 10: Macro level description of JA-AChem operating over link and decomp loops

6.2 Macro description of Jordan Algebra Artificial Chemistry

In addition to these particles, we need an algorithm for how our system works. This covers not only
the linking and decomposition aspects, but the entire behaviour of our chemistry. We define this using
MetaChem, starting at the Macro level, which describes the overall behaviour of the system over time.
We then look in more detail at the linking process. For more information on how decomposition works
see [6].

The algorithm loads the initial atom or particle set and then operates over two loops (figure 10).
These two loops are similar, starting with sampling from the tank followed by an operation. The first
loop performs linking; the second loop performs decomposition. The loops finish by returning their
modified samples to the tank, updating timing variables, and checking if enough operations or time has
passed to say whether the loop continues or if the system moves to the other loop.

If we make observations of our system, we add them to our logger, which can be added to the system in
figure 10. The logger pushes to an external environment which is never pulled from. These observations
can provide many different summary statistics. In later examples relating to linking and probabilities
we observe and log: number of atoms in each particle, number of different atoms in each particle, size of
particle trace, weight of particles, size of largest link in particles.

This macro system level description does not cover the internal workings of our link and decomposition
nodes. The algorithms for these are described in detail in [6].

6.3 Micro level description of linking in JA-AChem

Now we have the wider view of how this AChem works, we look in more detail at the micro level
description of a:Link. This is defined by the MetaChem graph in Figure 11. It has been defined and
labelled in terms of the macro-level component transition functions in a:Link. We discuss the process in
terms of these components below.

The a:Link action node uses all five component transition functions. The read, pull and push functions
are all performed from and to the S:reactant sample. More interesting are the check and processing
functions in this case. To describe these actions in more detail, we expand the a:Link action node into a
micro level subgraph of the macro system. This means that all five transition functions are themselves
defined in terms of micro-level graphs, and we introduce various explicit micro-level containers V:xxx,
T:xxx, S:xxx to implement the macro-level local state.

Some of these subgraphs do processing where the high level component function does not. For
example, processing does not occur in the macro-level read() function, but does in the corresponding
part of the micro-level graph. Now that we are taking a lower level view of this function, we can
reveal more of the implementation, and with it the shortcuts we take to reduce repetition of calculations
and have a smoother flow. So this lower-level description is not a formal refinement of the individual
component functions, but involves some refactoring (rearranging) of the functionality.

6.3.1 Expansion of macro-level read()

Three observers, o:internal struct, o:Alignment and o:Strength, gather the information needed for the
linking probability check. They do this by reading information from S:reactants and processing it.
The information about the internal structure and other derived values is stored in various environment
containers V:Mat, V:Eval, V:Evec, V:Pairs, V:Strengths.

19

V :PairsS:Reactant

o:Strength

V:Strengths

a:New Particleo:Internal Struct o:Alignment

V:Mat, Eval, Evec

d :Prob a:New Mat
d :Valid s:Pull s:Return

S:Reactant

T:New Part

V:Mat

V:New Mat, Pairs, Strengths

Enter a:link

Exit a:link Exit a:link

Exit a:link

read() check() pull() process()push()

V:New Mat

Figure 11: Micro Level description of a:link node from Figure 10. Below are the labels for the grouping of control nodes according to transition function in the
the outer node. The only external contain used here is S:Reactant. All other containers are part of LV and are lost at completion of control flow. We have no
need here for LB

20

The observer o:internal struct pulls any previous matrices, vectors and eigenvalues from the container
to clear it. It then extracts the matrix, normalised eigenvalues and unit eigenvectors for each particle in
the sample reactants and pushes these to the enviroment container.

The observer o:Alignment reads those values, then clears any preexisting pairs and then uses the new
values them to calculate the best pairs of eigenvalues to use, based on their alignment (eqn.4).

The observer o:Strength clears the previous strength value then uses this new information to calculate
the strength (eqn.5 between the (i, j) pair selected by the alignment, and stores it in the container
V:Strengths for use in the next phase.

6.3.2 Expansion of macro-level check()

The macro-level check() function in the a:link node looks like:

{

pass r < pAB & resultant matrix valid

fail otherwise

where pAB is the linking probability (eqn.6), and r is a uniformly distributed random value on the
interval [0:1].

In the micro-level view we break this down into two decisions. The first, d:Prob, decides whether to
progress based on the probability of linking4, r < pAB .

If the probability check passes, we perform some micro-level processing. We use a deterministic action
(one that always runs in full) a:New Mat to calculate what the new matrix would be (eqn.1) if we did
create the new particle. We store this for possible later use in V:New Mat.

The second decision, d:Valid, uses this result to make its decision based on the trace of the new
matrix. If the matrix has a non-zero trace we continue to s:Pull, otherwise we exit the macro-level a:link
node without ever pulling information, without destroying existing particles or creating new ones, leaving
S:reactant unchanged.

6.3.3 Expansion of macro-level pull()

This single node action, s:pull, just empties the existing reactants out of the S:reactants container. We
delete them by pulling them from the container, so they are no longer accessible.

6.3.4 Expansion of macro-level process()

This single node, a:New Particle, uses the previously calculated matrix stored in V:New Mat to create a
new particle. To do this it creates a link object with the previously calculated strength from V:Strengths.
This link object includes a memory of the reactants that are used to form the link, taken from the local
environment container. These properties, the list of eigenstate pairs used, and the matrices are used to
generate a new particle object. The new particle is stored in its own labelled section of the the local
storage, T:New Part.

6.3.5 Expansion of macro-level push()

The sampler s:return moves the newly formed particle in T:New Part into the empty S:Reactants.
Control then exits the node.

6.3.6 Clearing local containers

If this functionality is implemented as the macro-level node then the local containers would be deleted
when control leaves the node. In this micro-level implementation we have global containers that persist.
We could add an additional observer node just to clear these containers before leaving this section. In
the current implementation we instead give the observers pull access to these containers, and they pull
(clear) the variables before they push new values.

4Here we have only a single probability, for linking two particles. Full JA-AChem has a more sophisticated approach,
allowing multiple particles to link via higher order Jordan products, which involve multiple probabilities.

21

6.4 Modifying JA-AChem

JA-AChem was first introduced in [6]. That JA-AChem system has two properties of its algorithm that
we modify here.

6.4.1 Mass conservation

The original JA-AChem has no analogue of mass conservation: particles that react are not removed
from the system. So it explores the space of possible composite particles with no limitation of resource,
always with a plentiful supply of all discovered particles. Secondly, the reactions take place in a single
well-mixed tank, with no spatial component.

In the classical (S,R,A) model of AChems, any change to the algorithm to change these features is
considered a different chemistry (to some degree). In MetaChem, we can change some features at a macro-
level without changing the micro-level detailed linking and reactions: we can change the “glassware”
without changing the “chemicals”.

We have mass conservation in the JA-AChem described above. When a link is formed the components
used to make the new particle are pulled from the tank (rather than merely being read) and replaced
with the new particle. Similarly when a link decomposes, the components of the link and any remnants
of larger particles are processed and returned to the tank. In this way that the total number of atoms
both free and bound within particles remain constant.

6.4.2 Multiple tanks

We use MetaChem to introduce multiple tanks, and allow them to interact by transferring particles
between the tanks. We do this by adding a new outer loop to the overall macro-level flow, similar to the
approach described in StringCatChem (figure 7).

When transferring particles between two tanks we take the contents of both tanks, sort them by size
(number of atoms in particle) and then return them to the two tanks by starting with the largest and
returning it to a tank and returning the subsequent particles to which ever tank contains less atoms in
total. This maintains a rough equality in the number of atoms in each tank.

In section 8 we consider single tank, multiple non-interacting tanks, and tanks that interact in a grid
or in random organisation.

There are no transfers when working with a single tank (though we do use a larger single tank with
the same number and composition of atoms in the combined contents of the multiple tanks). In multiple
tank systems where we choose to have interactions we do this in two ways. In both cases we choose
a random number of transfers within a range (in this case 0 to 10 transfers). In the first case of the
random transfers we sample 2 tanks without replacement from all the tanks in the system and perform
a transfer. In the second (grid transfers) we choose a single tank at random and then select the second
tank from the Moore neighbourhood around the first tank.

7 Swarm Chemistry

We have developed a framework for describing artificial chemistries to replace the limited (S,R,A)
format. However, all the chemistries we have described in the new framework so far could be built
within (S,R,A).

In this section we describe Swarm Chemistry [21], a system built to explore beyond the (S,R,A)
format. Despite not having a comfortable description in the (S,R,A) framework – it does not have direct
interactions between particles – SwarmChem is widely known and accepted as an Artificial Chemistry.
It is therefore important to show that, while (S,R,A) may struggle with SwarmChem, MetaChem
comfortably describes it. In the description of SwarmChem in MetaChem we present here, we can see
that SwarmChem is not some borderline AChem. It has many close similarities to other more classical
AChems when we consider its controls and algorithms, rather than simply its lack of physical connections.

7.1 Flocking in SwarmChem

The individuals in SwarmChem, often referred to as boids or agents, interact by each boid changing its
own velocity based on the local positions and velocities of its neighbours. This involves no knowledge of
the neighbours’ internal parameters, just observation of their velocity and position. This gives the effect
of swarming or flocking like that seen in birds. Different parameters sets produce different swarms in

22

Figure 12: Pulsating Eye swarms contributed to SwarmChem by Benjamin Bush using recipe: 102 *
(293.86, 17.06, 38.3, 0.81, 0.05, 0.83, 0.2, 0.9) 124 * (226.18, 19.27, 24.57, 0.95, 0.84, 13.09, 0.07, 0.8) 74
* (49.98, 8.44, 4.39, 0.92, 0.14, 96.92, 0.13, 0.51), bingweb.binghamton.edu/∼sayama/SwarmChemistry/.
An example of interesting 2D organisation using 3 different parameter sets for three hundred boids.

terms of the density of the swarm and how it moves. In SwarmChem boids with different parameters
are allowed to mix (Figure 12).

SwarmChem is a framework for a class of artificial chemistries. Its intention is to explore how higher
level statistical rules for chemical systems emerge from lower level local interactions. It does this with
the basic concepts of [20]’s Boids.

Flocking in both boids and SwarmChem works as follows: at each time step for each boid we first
work out the neighbourhood of the boid. We then calculate an acceleration vector of the boid towards the
centre of the boids group of neighbouring boids; this is called cohesion. We then calculate a vector toward
the average heading of the neighbouring boids; this is called alignment. We then calculate a vector to
prevent crowding, moving to increase the separation between boids. Finally we perform “pacekeeping”,
which biases the pace (speed) of the boid towards its normal speed in order to prevent all boid’s either
becoming stationary or tending towards their maximum speeds. Then the boid is moved, based on this
information. This is done on all boids at once so we use the information of position and velocity from
the current time step to calculate the next. See Figure 13 for a visual description.

The key change SwarmChem makes to the boids system is to assign recipes (parameter sets) to
individual boids, rather than using global fixed values. This allows heterogeneous swarms, which can
form new kinds of the patterns through their interactions.

In the basic SwarmChem framework, each boid operates based on a particular recipe; extended
versions may use multiple recipes with weights used to choose the active recipe [22, 23, 24]. Recipes and
weights can be exchanged and changed by other boids. This can be done based on collision or other
factors.

This exchange gives boids a mechanism to change and optimise to maintain structures. This allows
a form of evolution, if we consider a boid to be a child of itself when its parameters change.

More recently this system has been extended by identifying these larger structures and considering
them as entities in their own right [26]. Such an approach is important to the analysis of multi-level
artificial chemistries. Initially, the boids were restricted to 2d space, but another extension places the
boids in a 3d space [25].

Here we describe a variant of SwarmChem in MetaChem. In this variant we exchange a random
number of parameters when a collision occurs. This is different from the weighted recipe method used
elsewhere. In other versions one boid is dominant in the collision and enforces its recipe on the other,
whereas collisions in our system are “no fault”, in that both boids are changed. We also prevent trading
normal or max parameters if that would result in the boid’s normal exceeding its max. A preliminary
version of this description can be found in [18]. Here we describe it using a full macro-level graph, and
a micro-level graph of the update process, an expansion of the flock action. We use this description in
the nested AChem described in the next section. This demonstrates that SwarmChem fits comfortably
in the MetaChem framework, and can be combined with other AChems.

23

Cohesion Alignment Seperation Whim

c1 +c2 +c4+c3 =

Pacekeeping

Update:

Figure 13: A pictorial description of flocking in Reynolds boids and swarm chemistry. The red disk
shows R the perception distance of our boid.

T:Parameters

o:Generation

V:Time T:n−1

a:Flock

S:n

a:Move o:Collisions

V:Collisions T:n−1

s:Load
Parameters

s:Copy
to Previous

s:Log

T:External

a:Update

Parameters

Figure 14: Macro level Swarm Chemistry graph. It includes the timing counter o:generation, flocking
and moving as well as collisions and the logging sampler to track the chemistry.

7.2 Macro description

The macro-level graph of our variant of SwarmChem is shown in figure 14. It operates as follows:

• s:Load Parameters : starting node, which loads the initial parameter set from T:Parameters; and
randomly position the boids, stored in S:n.

• o:Generation : iterate the clock. This “tick” is part of the discrete timing system that is consistent
with all current swarm systems. This is evident in the rest of the macro system as well.

• s:Copy to Previous : the sampler copies the current generation from S:n to the tank T:n-1, which
is used to hold the previous generation. This gives a copy of the previous state of all the boids for
use in subsequent calculations.

• a:Flock : update each boid’s parameters (stored in S:n) by following the classic boid rules

• a:Move : move all the boids (stored in S:n) based on their parameters and current headings and
velocities. This is common to all swarm chemistries.

• o:Collisions : check for collisions, and record them in V:Collisions. This is part of our variant
SwarmChem.

24

• a:Update Params : update parameter sets that are changed by collision. S:n now contains the fully
updated generation.

• s:Log : log the previous generation to T:external; clear T:n-1 ready for the current generation to
be copied in the next loop iteration

• loop back for the next iteration

7.3 Micro description of Flocking

The flocking action captured in the macro-level a:Flock node (figure 14) contains most of the activity of
the system. In this section we expand that node in a micro-level graph, Figure 15.

As with the JA-AChem example, we do not formally refine each macro-level component function
individually, but rather use that structure to guide the design of the micro-level description. Here we
sequentialise the operation, by performing the composition of component functions on each individual
particle in the swarm.

7.3.1 read()

We start by reading various individuals into different tanks. The sampler s:Update Boid reads a random
single boid from S:n into S:boid for updating. The sample s:Find Neighbours reads out all the neighbours
of this boid, defined by its perception distance, into S:Neighbours. The observer o:Local Averages gener-
ates (v̄), (x̄) and (s̄) of the boids in the neighbourhood, and stores them in the environment V:Averages.

7.3.2 check()

The action always occurs, so the macro-level check always returns true. Here we choose to implement a
decision to decide the actual process of the function, which is an analogous choice. The decision node
d:Flock makes a choice between performing a random walk or normal flocking behaviour, based on the
number of neighbours. If |N | > 0 then the operation is flocking, else a random walk.

7.3.3 pull()

The sampler s:Pull Boid remove the selected boid from the current generation S:n. In a subsequent
refactoring, we might merge this into the B:Update Boid node to simplify the graph. However, here our
initial design is being guided by the transition function format.

7.3.4 process()

There are two processing paths.
In the random walk path, a:Random Walk sets the current boid with a random velocity (eqn.7).

Straying: ai = (r±s, r±s) (7)

Along the flocking path, four action nodes perform the four calculations of cohesion, alignment,
separation, and whim (a small random component added to to motion to keep the system from behaving
too predictably) as follows: a:Cohesion implements eqn.8, a:Alignment implements eqn.9, a:Separation
implements eqn.10, a:Whim implements eqn.11.

Cohesion: ai = c1(x̄− xi) (8)

Alignment: ai = ai + c2(v̄ − vi) (9)

Separation: ai = ai + c3s̄ (10)

Whim: ai = ai + (r±s, r±s) (11)

The branches rejoin at this point, and a:Pacekeeping implements the remaining eqns.12–14. The
intent here is to prevent boids from constantly increasing in speed, by modifying their speed back
towards their normal velocity vn.

Acceleration: v∗i = vi + ai (12)

Prohibit Overspeeding: v∗i = min(vm/|v
∗
i |, 1) • v

∗
i (13)

Pacekeeping: v∗i = c5(vn/|v
∗
i | • v

∗
i) + (1− c5)v

∗
i (14)

25

T:n−1S:n

s:Update
Boid

S:Boid
S:Neighbours

o:Local
Averages

V:Averages

d:Flock

a:Align a:Whima:Cohesion a:Seperation

a:Random

Walk

Keeping
a:Pace

s:Pull
Boid

s:Push
Boid

s:Pull
Boid

S:n

S:n

S:Boid V:Averages

S:Boid

S:n new

d:Updated

S:n

s:Push
Update

read() check() pull() process() push()

s:Find
Neighbours

Figure 15: Micro Level description of flocking in Swarm Chemistry. Due to the large loop in this we could consider it a description of many identical nodes or
as one node at the Macro level.

26

Figure 16: Pulsing Eye recipe as implemented in MetaChem

7.3.5 push()

Having finished processing, s:Push Boid pushes the processed boid to a different sample, S:n new, which
keeps track of the boids that have been processed. The decision d:Updated decides whether to loop
back to process a further boid, or to continue on, based on whether the generation sample S:n has been
emptied yet. Once all boids have been processed, s:Push Update moves them from S:n new back into
the (now empty) S:n.

Note that within this graph we do not update velocity; this is done along with position in the macro-
level a:Move node.

7.4 Example: Pulsing Eye

With this implemented in MetaChem we can still work with the same recipes already generated for
Swarm Chemistry. For example here we implemented the recipe shown in Figure 12. In this case we get
spinning sets of pulsing eyes which merge into larger and larger eyes. This behaves a little differently
because we have a different set of collision rules. But it is visibly the same recipe made of three different
parameter sets.

8 Nested Chemistries

8.1 Levels of chemistries

Sub-symbolic artificial chemistries (ssAChems) [3, 4, 5] are generally AChems whose atoms and particles
have internal structure that defines their behaviour. JA-AChem is one such ssAChem: particles are
matrices whose internal structure (elements) defines their linking behaviour through eigenvalues and
eigenvectors. The existing ssAChems are analogous in their rationales to natural chemistry viewed at
the level of atomic structure affecting molecular properties.

Other AChems are designed to reflect the properties of chemistry at the level of cells [11, 14] or
chemical reaction systems [29]. In natural chemistry these different levels are closely related: cells
contain chemical reaction systems, and chemical reaction systems are based on individual particle and
atom interactions. While attempts have been made to bridge the gaps between such levels in individual
systems [13], so far the systems are very simple and lacking in more complex features.

We can take advantage of feature-rich existing AChems, by using MetaChem to combining them to
give a system that can span different levels of activity and behaviour in a single AChem system. We
demonstrate this approach here by combining JA-AChem [6, 7] and SwarmChem [21, 23, 24, 28].

27

o a

V

T T

Figure 17: Communication link between the blue AChem and the pink AChem. The observer node
observes the blue AChem’s tank and pushes the communicated information to the shared environment.
Control passes to the pink AChem’s action node, which acts on the its tank based on information read
from the shared environment.

8.2 General Method

We can connect any two AChems in MetaChem by giving them the ability to communicate via their en-
vironment [18]. This communication can be uni- or bi-directional. The basic MetaChem graph structure
of combined communicating AChems is given in Figure 17.

We use colour to indicate the ‘ownership’ of a node by a single system. We do not allow a node
owned by one AChem to directly communicate with the nodes owned by a different AChem. Instead,
information is shared using an environmental container that is not owned by either AChem. So in Figure
17, the blue observation is of a tank in the ‘blue’ AChem, and the pink action is on a tank in the ‘pink’
AChem. The figure shows uni-directional communication, in which the blue AChem influences the pink.
By adding a second link in the other direction we could establish bi-directional communication. Both
the action and the observation are defined by the designer.

For example, if we wish to establish “side-by-side” chemistries, where two chemistries with their own
separate particles and reactions co-exist in the same spatial system, then our observation will produce
a summary statistic that is a value, or set of values, based on the whole system, which will uniformly
affect the entire system in the second chemistry. Alternatively, the observer can generate statistics based
on individual particles, which can then affect individual particles in the second AChem.

Below we give an example of a “nested”, or multi-level, AChem with bi-directional communication.
The observer of the lower-level AChem generates a set of values over a large number of particles in that
AChem. These values are then used to influence the behaviour of a single particle in the higher-level
AChem. In turn the behaviour and interaction of one or two particles in the higher-level AChem influence
a large number of particles in the lower-level AChem.

8.3 Implementation: Nested Chemistry

We generate a new set of chemistries by combining JA-AChem and SwarmChem; each of the particles of
SwarmChem contains a well-mixed tank of JA-AChem particles (so we have “swarming tanks of matrix
particles”), whose properties inform the SwarmChem particle parameter values. SwarmChem’s spatial
movement provides a limitation and control on particle exchanges in JA-AChem between different tanks.
The JA-AChem tanks communicate with SwarmChem by changing its parameter values, which influences
the agents’ spatial movement and likelihood of collision.

First, we abstract the description of both AChems to a higher level that comprises two control nodes
and two container nodes. The first control node, s:LoadX, is the initialisation sampler, that loads the
initial state from T:InitX into T:X. The other control node, a:UpdateX, performs one of the outer loops
of the AChem’s operation as defined in the earlier macro-level graphs.

The other control nodes associated with each of our separate chemistries is new and deals with
modifying the associated chemistry based on information observed from the other chemistries particles.

We link these individual high-level AChem graphs in various ways to give seven distinctive systems;
an eighth system is achieved through a change in system settings. The largest of these systems is a fully
nested AChem that contains all the AChem and linking nodes used in our systems, Figure 18.

We combine the systems with two graph fragments, labelled Parameter Setting and Transfers in
Figure 18. These provides a means of communication between the two systems. The five stages shown
in Figure 18 are:

28

s:LoadS
a:Transfer

Particles

T:InitialJA T:InitialSwarm T:Swarm

T:Swarm V:TransfersV:Parameters

T:JA

T:JA

T:Tank

Swarm Chem JA AChemInitialisation

Parameter setting Transfers

s:LoadJA
o:Generate

Parameters

a:Update
Parameters

o:Collision
Check

a:Update
Swarm a:Update

JAAChem

Figure 18: Macro-level NestedChem graph in MetaChem. JA-AChem nodes are shown in pink, Swarm-
Chem nodes in blue. White nodes are either shared or not natively part of either AChem.

Initialisation: Initial tanks of JA-AChem particles and initial swarm agents are loaded into the system
and stored separately with matching indexing to allow for reference between the two.

Parameter setting: This generate parameters values for each SwarmChem agent based on the particles
in its associated JA-AChem tank. The parameter values are pushed to the environmental container
V:parameters (figure 18). The swarm then updates itself by reading these values.

SwarmChem: The SwarmChem particles are updated and moved using a single SwarmChem timestep.

Transfer: SwarmChem assesses whether any collisions have occurred between its particles. It pushes
a record of these collisions to the environmental container V:transfers. JA-AChem reads this
container, and uses the results to exchange particles between tanks based on the SwarmChem
collisions.

JA-AChem: The JA-AChem updates by performing a number of bonding and decomposition attempts.
All tanks are independent mass-conserving well-mixed tanks.

There are apparently four invalid edges in the macro system graph of NestedChem (figure 18):
(a:Update Parameters, T:Swarm), (a:Swarm Update, T:Swarm), (a:Transfer Particles, T:Tank) and
(a:JA-AChem Update, T:Tank). All of these edges appear to allow actions to push to tanks, which
is not allowed (table 3). In the case of a:Swarm Update and a:JA-AChem Update we have seen the
expanded graphs of these nodes in the macro graphs of each system, Figures 10 and 14. In those graphs
we see that the actions carried out by these nodes mean they always move the particles to samples
before making any changes. Here we connect directly to the tanks as this is a macro graph, a form of
pseudo-code, this is actually implemented with these nodes expanded through the macro graphs shown
previously down to the micro graph, Figures 11 and 15. At these levels of description the content of
these tanks is moved to samples before being used.

In the case of a:Transfer Particles, if we were to expand this node we would see that all the operations
of this node are carried out by samplers, and there is therefore no issue that before starting the particles
have not been moved to a sample.

Finally, in the case of a:Update Parameters the process function is applied over all particles in the
system, meaning the sample would be the entire tank, so in another abuse of notation and to avoid
introducing a further two control nodes and a container to move the entire contents back and forth, we
allow the node to connect directly to the tank. It should be take given that in the expanded form the
necessary sampling would occur.

8.3.1 Modular Systems

From this full system we can derive eight variant systems. The control flow of these systems is shown in
Figure 19.

29

I:

II:

III:

IV:

V & VI:

VII:

VIII:

Figure 19: Various combinations of JA-AChem and SwarmChem, See text for details.

I. Nested. The full Nested AChem system as shown in Figure 18

II. Nested without collision. JA-AChem particles are not transferred between tanks, but still deter-
mine the parameter values of agents in the SwarmChem

III. SwarmChem. SwarmChem agents randomly exchange parameter values on collision; there is no
communication with the JA-AChem.

IV. SwarmChem without collision. A very basic form of SwarmChem in which the agents interact
only through Boid like flocking behaviours.

V. JA-AChem single tank. A single well-mixed tank of JA-AChem. The same number of evaluations
are used per generation and the same number of starting particles are also used as the other systems.

VI. JA-AChem multiple tanks with no interaction. A JA-AChem with the same number of tanks
as in the nested version; there are fewer atoms and particles in each tank, but the same number of
overall atoms and evaluations are used.

VII. JA-AChem multiple tanks with random transfers. The same system as in VI but with
tanks randomly selected to randomly transfer particles between them.

VIII. JA-AChem multiple tanks with grid transfers. The same as in VII but transfer tanks se-
lected based on a Moore Neighbourhood

8.3.2 Discussion

In the JA-AChem level of the systems the resultant number of particles in the tanks should quickly sta-
bilise, but we expect the systems with transfers to be less stable than others. Particles being transferred
in and out of the tanks should disturb any equilibrium.

30

We also expect to see larger particles in the partitioned systems as the smaller size of the tanks limit
the sampling possibilities, increasing the chances of selecting molecules which already contain multiple
particles. As these are used and the number of particles in the tank decreases, these probabilities should
further increase.

We can observe many different statistics on the agents of the swarm. In homogeneous flocking the
relative position of an agent to its visible neighbours should be very similar across agents, as a flock all
have the same perception radius and tendency for avoidance. In SwarmChem these have greater variation
but should be similar in sets of agents forming a swarm. Here we expect to see greater variation in the
nested SwarmChem where all values of perception radius and tendency for avoidance are possible.

Results, analysis and further discussion of these nested systems can be found in [17, 18].

9 Conclusion and Future Work

9.1 Conclusion

We now have a formal language in which to discuss different AChems. In MetaChem, we can readily
take the same “chemicals”, and investigate their behaviour in different “glassware”, separating out the
contribution of the underlying low level bonding rules from the environmental effects of how the particles
are brought together.

All current systems we are aware of in the literature can be described by static graph MetaChem.
To show the power of this modularisation and graph-based representation, we have presented two

case studies of AChems. The first of these is our own chemistry JA-AChem, originally developed based
on algebraic structures, but here re-described in the MetaChem format. The second AChem is Swarm
Chemistry, chosen for being a well-established AChem that is not well-described in the (S,R,A) for-
mat. SwarmChem and JA-AChem are very different AChems, with next to no overlap in their nature.
SwarmChem also represents an independent example of description of an existing AChem in MetaChem.

We combine these using a graph structure that we widely applicable for the joining of two artificial
chemistries. This is one possible use of the Static Graph MetaChem, there are others and extensions of
MetaChem described below.

9.2 Future Work

9.2.1 Other Combinations of AChems

We have illustrated one approach for combining artificial chemistries here, with two specific AChems,
but the potential is much broader. New and different hierarchical AChem combinations could be tried.
There are also mixed systems and joint systems to consider. Mixed systems would share tanks or spatial
environment, with a new interaction added between the different types of particles. Joint systems would
work with a combined particle made up of a particle from each system.

9.2.2 Static Graph MetaChem: reuse and toolsets

The static graph MetaChem described here is a first step towards standardised framework for AChems.
It is not just a mathematical framework; it can and has been implemented in software [19]. These graphs
provide more than a simple visualisation: they are a new way to design, implement and run AChems.

MetaChem provides a move forward in designing AChems. As we gather more descriptions in this
framework, designers can begin make use of parts of existing descriptions in new systems. Addition-
ally, we can start to standardise output values from AChems, and make use of standard visualisations
and reporting of results. The use of modularised structured nodes with defined functions should allow
designers to define new nodes easily.

We have defined a general method of composition using indirect communication (a form of envi-
ronment orientation [10]) with macro-level graphs. The ability to join systems and use modularity to
share parts of algorithms could provide, after more development, significant speedups in designing and
implementing new AChems.

The modularity and clear designation of particles and environmental properties allows the design
of generic analysis tools, visualisation tools, and metrics that can be used across similar systems. An
AChem can provide a set of particles and their position to a visualiser, regardless of the system’s other
properties. A more general purpose proximity-based analysis for higher level object identification, such
as that used in more recent SwarmChem work [26, 27], becomes reusable.

31

9.2.3 Dynamic MetaChem

Above we describe static graph MetaChem. The graph exists before the system is run and does not
change at run time, similar to most programs. A static graph MetaChem could be defined with a set of
graph-rewriting rules that generate the graph. The rule set could produce a particular graph or multiple
possible graphs, such as the ones in figure 19.

This use of graph-rewriting rules then provides a natural way to make the topology dynamic, during
AChem execution. A system could grow at run time, and could grow differently dependent on differences
in the produced particles and variables.

A dynamic edge graph MetaChem would allow the graph to add and remove edges during run time.
This could use a further type of control node to be responsible for this rewrite. In terms of the hierarchy,
Figure 1, these nodes would fall under the grouping of control flow admin nodes. Such a system could
reorder its own control flow, or even connect entirely new nodes or subgraphs to the control flow that,
while existing at the start, were not connected.

We could use these new control nodes to trigger events in the system based on specific conditions,
such as complexity. We could also use this as part of evolving Artificial Chemistries, by having a set of
nodes to start with and allowing edges to change over time until the control flow becomes stable. This
could be controlled by the system itself, so it would “learn” an artificial chemistry.

9.2.4 Evolving MetaChem

For true evolution and change we would move to full graph language MetaChem (or dynamic graph
MetaChem), which could create and destroy its own nodes and edges at run time. The graph could
grow, and could remove parts that were no longer needed, allowing it to prune its own process. This
type of system would allow the AChem to change completely at run time, so it could truly transition and
change abstraction levels and experiments as it ran. This could enable paths in open-ended evolution
and open-ended systems research.

If we allow the set of particles to be the graph rules that generate the graph, and the reactions change
those rules, then we can evolve how graphs form. This would allow systems not only capable of changing
at run time but of changing their basic components and how they can run during their execution. With
suitable initial rule sets and reactions this could allow for the production of a completely unexpected
AChems with as little design bias as possible.

This could allow the design and growth of a system capable of self-reflection and change at run time.
This opens new possibilities for transitions towards open-ended evolution [30], as we can build systems
capable of reacting to new emergent objects or behaviours if they can be identified. For example, if a
system identified a set of objects within itself, it could then attempt to model those objects at a higher
level and improve that model with information from the original low-level implementation [16].

9.2.5 MetaChem as an AChem

We can consider MetaChem as an AChem itself, where the atoms are graph nodes, the links are graph
edges, and the composite particles are (potental) AChems. We can consider an isolated MetaChem
subgraph as forming a subAChem or a full AChem. An instance of MetaChem is therefore not a single
graph but a collection of graphs. So MetaChem provides both the language to describe AChems, and a
process to build, compose, and evolve AChems. This is a key advantage of using a graph-based formal
framwork in the definition of MetaChem.

10 Acknowledgements

The research for this work was done with PhD funding from the Department of Chemistry, University
of York, UK.

References

[1] Banzhaf, W. and Yamamoto, L. (2015). Artificial Chemistries. MIT Press.

[2] Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial Chemistries—A review. Artificial Life,
7(3):225–275.

32

[3] Faulconbridge, A. (2011). RBN-World: Sub-Symbolic Artificial Chemistry for Artificial Life. PhD
thesis, Department of Biology, University of York.

[4] Faulconbridge, A., Stepney, S., Miller, J. F., and Caves, L. S. D. (2011). RBN-World: A sub-symbolic
artificial chemistry. In Kampis, G., Karsai, I., and Szathmáry, E., editors, Proceedings of ECAL 2009,
Budapest, Hungary, volume 5777 of LNCS, pages 377–384. Springer.

[5] Faulkner, P., Krastev, M., Sebald, A., and Stepney, S. (2018). Sub-Symbolic artificial chemistries. In
Stepney, S. and Adamatzky, A., editors, Inspired by Nature, pages 287–322. Springer.

[6] Faulkner, P., Sebald, A., and Stepney, S. (2016). Jordan algebra AChems: Exploiting mathematical
richness for open ended design. In Gershenson, C. et al., editors, Proceedings of the Artificial Life
Conference 2016, pages 582–589. MIT Press.

[7] Faulkner, P., Sebald, A., and Stepney, S. (2017). Tuning Jordan algebra artificial chemistries with
probability spawning functions. In Knibbe, C. et al., editors, Proceedings of ECAL 2017, Lyon, France,
pages 497–504. MIT Press.

[8] Grimm, V. and Railsback, S. F. (2005). Individual-based Modeling and Ecology. Princeton University
Press.

[9] Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26(3):251–321.

[10] Hoverd, T. and Stepney, S. (2015). Environment orientation: a structured simulation approach for
agent-based complex system. Natural Computing, 14(1):83–97.

[11] Hutton, T. J. (2007). Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif.
Life, 13(1):11–30.

[12] Krastev, M., Sebald, A., and Stepney, S. (2016). Emergent bonding properties in the spiky RBN
AChem. In Gershenson, C. et al., editors, Proceedings of the Artificial Life Conference 2016, pages
600–607. MIT Press.

[13] Liu, Y. (2018). The artificial ecosystem: number soup (part II). arXiv preprint arXiv:1801.04916.

[14] Madina, D., Ono, N., and Ikegami, T. (2003). Cellular evolution in a 3D lattice artificial chemistry.
In Banzhaf, W. et al., editors, Proceedings of ECAL 2003, volume 2801 of LNCS, pages 59–68. Springer.

[15] McCrimmon, K. (2006). A taste of Jordan algebras. Springer Science & Business Media.

[16] Nellis, A. and Stepney, S. (2010). Automatically moving between levels in artificial chemistries. In
Fellermann, H. et al., editors, Proceedings of ALife XII, Odense, Denmark, pages 269–276. MIT Press.

[17] Rainford, P. F. (2018). Algebraic approachs to artificial chemistries. PhD thesis, Department of
Chemistry, University of York.

[18] Rainford, P. F., Sebald, A., and Stepney, S. (2018). Modular combinations of artificial chemistries.
In Ikegami, T. et al., editors, Proceedings of the Artificial Life Conference 2018, pages 361–367. MIT
Press.

[19] Rainford, P. F., Sebald, A., and Stepney, S. (2019). An object oriented implementation of the
MetaChem framework. In Fellermann, H. et al., editors, Proceedings of the Artificial Life Conference
2019, pages 119–126. MIT Press.

[20] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In Stone, M. C.,
editor, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, pages 25–34. ACM.

[21] Sayama, H. (2009). Swarm chemistry. Artificial Life, 15(1):105–114.

[22] Sayama, H. (2010a). Robust morphogenesis of robotic swarms [application notes]. IEEE Computa-
tional Intelligence Magazine, 5(3):43–49.

[23] Sayama, H. (2010b). Swarm chemistry evolving. In Fellermann, H. et al., editors, Proceedings of
ALife XII, Odense, Denmark, pages 32–33. MIT Press.

33

[24] Sayama, H. (2011). Seeking open-ended evolution in swarm chemistry. In 2011 IEEE Symposium
on Artificial Life (ALIFE), pages 186–193. IEEE.

[25] Sayama, H. (2012). Evolutionary swarm chemistry in three-dimensions. In Adami, C., editor,
Proceedings of Artificial Life 13, pages 576–577. MIT Press.

[26] Sayama, H. (2018). Seeking Open-Ended evolution in swarm chemistry II: Analyzing Long-Term
dynamics via automated object harvesting. In Ikegami, T. et al., editors, Proceedings of the Artificial
Life Conference 2018, pages 59–66. MIT Press.

[27] Sayama, H. (2019a). Cardinality leap for Open-Ended evolution: Theoretical consideration and
demonstration by “hash chemistry”. Artificial Life, 25(2):104–116.

[28] Sayama, H. (2019b). Complexity, development, and evolution in morphogenetic collective systems.
In Georgiev, G., Smart, J. M., Martinez, C. L. F., and Price, M. E., editors, Evolution, Develop-
ment and Complexity: Multiscale Evolutionary Models of Complex Adaptive Systems, pages 293–305.
Springer.

[29] Soula, H. A. (2016). Generalized stochastic simulation algorithm for artificial chemistry. In Ger-
shenson, C. et al., editors, Proceedings of the Artificial Life Conference 2016, pages 590–597. MIT
Press.

[30] Stepney, S. and Hoverd, T. (2011). Reflecting on open-ended evolution. In Lanaerts, T. et al.,
editors, Proceedings of ECAL 2011, Paris, France, pages 781–788. MIT Press.

[31] Stepney, S., Polack, F., and Toyn, I. (2003). Patterns to guide practical refactoring: examples
targetting promotion in Z. In Bert, D., Bowen, J. P., King, S., and Walden, M., editors, ZB2003:
Third International Conference of B and Z Users, Turku, Finland, volume 2651 of LNCS, pages 20–39.
Springer.

[32] Watson, I., Sebald, A., and Stepney, S. (2019). A Meta-Atom based Sub-Symbolic artificial chem-
istry. Artificial Life Conference 2019, pages 127–134.

A Appendix: Mathematical Formalism

We provide a mathematical formalism here. First we describe the static elements that make up the static
graphs of our system. Then we define the dynamic system state. Finally, we define the state transition
function over the graphs that are used to capture the dynamics of a specific AChem.

A.1 Static Graph MetaChem

We have two static graphs capturing the control flow and information flow. We build up the definition
as follows.

A.1.1 Nodes

The set of graph nodes is N . As shown in our hierarchy, Figure 1, our system is composed of container
and control nodes. The graph nodes are partitioned into two sets: Control nodes C and Container nodes
B.

〈B,C〉 partition N (15)

where the notation 〈X1, . . . , Xn〉 partition X means that the set X is partitioned by the n subsets Xi.
Each of the sets B and C is partitioned further.
The container nodes B comprise three categories of node: Environment nodes V , Tank nodes T , and

Sample nodes S.
〈V, T, S〉 partition B (16)

Control nodes are more complicated in the hierarchy but the static components partition the set into
Action (Ca), Decision (Cd), Observer (Co), Sampler (Cs), and Termination (Ct) nodes.

〈Ca, Cd, Co, Cs, Ct〉 partition C (17)

34

action decision sampler observer termination

tank T X

sample S X X

variable V X X

Table 4: Container types that Control nodes are allowed to have push and pull edges with.

A.1.2 Edges

Our hierarchy, Figure 1, also contains control flow and information flow. These appear in our static
graphs as edges. We define an edge as a pair of nodes. Edges are either control edges or information
edges, EG and EI .

Control Edges. These are edges between control nodes

EG ⊆ C × C (18)

Different subtypes of control nodes can have different numbers of exiting edges. Define target to map
a source control node to the set of target control nodes connected to it by an edge in EG:

target : C → PC (19)

∀c : C | target(c) = {cs : C | (c, ct) ∈ EG} (20)

Decision control nodes have multiple targets; all other control nodes have a unique target:

∀c : Cd |#target(c) > 1 (21)

∀c : C \ Cd |#target(c) = 1 (22)

Information Edges. These come in three varieties.
Read edges, Eread, are directed from control nodes to containers, and indicate which containers’

information a control node can read. In the graphical notation they are shown as undirected edges, as
there is no change to the container node.

Eread ⊆ C ×B (23)

Pull edges, Epull, are directed from containers to control nodes, and indicate the containers that a
control node can remove information or objects from. Every Epull edge must have a corresponding Eread

edge:
Epull ⊆ B × C, Epull ⊆ E−1

read (24)

Push edges, Epush, are directed from control nodes to containers, and indicate the containers that a
control node can push information and objects to. Every Epush edge must have a corresponding Eread

edge.
Epush ⊆ C ×B, Epush ⊆ Eread (25)

There are limits on the containers that different node types are allowed to have pull and push edges
with; see Table 4.

A.1.3 Graphs

We have two graphs, GΩ, IΩ, of our system Ω, capturing control and information respectively. For the
purpose of this definition we assume we are always referring to elements of a given system, and so drop
the system label such that our graphs GΩ, IΩ become G and I.

G = (N,EG), I = (N,EI) (26)

35

A.2 Dynamic System State

Now we have these static graphs, we can start a dynamic process guided by them. We denote the
dynamic aspects of our system using the Greek alphabet, to distinguish it from static components.

Container nodes B can contain particles of type Φ. The structure of the set Φ of particle types is
application dependent. We define the contents P of such a node as a bag (multiset) of particle types:

P = Φ → N (27)

where N is the set of natural numbers counting how many instances of each particle type there are in
the bag. Here we refer to the content of a container using the mapping from container to particle bag; in
the informal sections above we abuse the notation and refer to the content of containers simply by the
container label, for readability and brevity.

Environment nodes V contain environment information of type Ψ. We do not here further define the
structure of the set Ψ; this is application dependent.

The current state node c ∈ C, a pointer in this static graph case, is a control node dynamically
assigned and changing over time. This pointer indicates the current control node, whose transition
function is to be run in order to find the next state of the system.

The full system state comprises five components: the Control Graph G, the Information Graph I,
the current state node c ∈ C, a mapping from the container nodes to the bag of particles they contain
(φ ∈ B → P), and a mapping from the environment nodes to the dynamic environment information they
contain (v ∈ V → Ψ). The system being formalised here has static graphs G and I, so we do not here
include them in the system state, rather taking them to be globally defined. The set of system states is:

Ωs = C × (B → P)× (V → Ψ) (28)

We define a specific system state ω as the triple (c, φ, ψ) ∈ Ωs. The initial state of the system has
c = c0, the identified start node.

A.3 Transition Functions

Each node has a transition function of the whole system state, as nodes can access and affect neighbouring
nodes5.

δ : Ωs → Ωs (29)

The overall transition function is decomposed into the component functions: read(), check(), pull(),
process() push(), next(). For any node some of these may be null (identity) functions. For some kinds
of nodes, some components are always null or defaulted, Table 2.

Using # to indicate strict ordering of application of functions from left to right gives the following
definition of δ:

δ = pull # process # push # check # read # next (30)

Each of these transition function components plays a different role in the transition and uses a different
aspect of the state. These functions are summarised in Figure 9 and formalised below.

The transition function components exploit a local state, which exists only for the duration of the
transition. This comprises a labelled bags of particles (labelled by their source container node), and
labelled environment variables (labelled by their source environment node)

Local = (B → P)× (V → Ψ) (31)

We define a specific local state as the pair (φl, vl) ∈ Local.
Local state disappears as soon as the transition function is completed, so control nodes have no lasting

state or memory. Any information used by a control node must come from containers at the start of a
transition using the read() or pull() functions, and any information or objects that should remain in the
system should be written back to a containers by the push() function.

5It would be possible to define local state transition functions, and “promote” them [31] to a global state transition
function, but the mathematical machinery needed to do so is here more cumbersome than a direct definition.

36

A.3.1 read()

The read() function allows a node to collect information from external containers into the temporary
local containers, where it can to be used by the following transition functions. This does not modify the
system state.

read : Ωs → (Ωs × Local) (32)

read(c, φ, ψ) = ((c, φ, ψ), (φl, ψl)) (33)

The containers and environment nodes from which current node c can read are the ones attached by
read edges:

Bc = {b ∈ B | (c, b) ∈ Eread} (34)

Vc = {v ∈ V | (c, v) ∈ Eread} (35)

The default behaviour of read() is to copy all the readable containers to the local state:

φl = {(b, ρ) | b ∈ Bc ∧ (b, ρ) ∈ φ} (36)

ψl = {(v, p) | v ∈ Vc ∧ (v, p) ∈ ψ} (37)

In practice, implementations may choose to read only a subset of the information in the readable con-
tainers.

A.3.2 check()

The check() function uses the local information to generate a threshold probability, which is used to
determine whether the rest of the transition (the part that actually alters containers) occurs, or exits at
this point. This packages any probabilistic aspects of the execution of the transition.

The check function uses a probability spawning function (psf) [7] to determine if the rest of the
transition will occur. The default behaviour in this case is to return True, which it does for administrative
nodes which always operate in a deterministic manner.

The execution checks the generated probability psf(φl, ψl) against a uniform random number, r. If
our threshold probability is less than r we continue, otherwise we exit.

{

δ = next ; psf(φl, ψl) < r

check = Id(Ωs × Local) ; otherwise
(38)

where r ∈ [0 : 1] is a uniformly distributed random number.
Either the transition function exits and does not proceed to any further functions, else the other

functions are executed as expected. In either case, check makes no change to the state of the system, or
the local state.

A.3.3 pull()

The pull() function removes information from connected containers. Any information removed has
(potentially) been copied to the local state in read(), where it is available for local processing. This
modifies the system state, but not the local state

pull : (Ωs × Local) → (Ωs × Local) (39)

pull((c, φ, ψ), (φl, ψl)) = ((c, φ′, ψ′), (φl, ψl)) (40)

The containers and environment nodes from which current node c can pull are the ones attached by
pull edges:

Bc = {b ∈ B | (b, c) ∈ Epull} (41)

Vc = {v ∈ V | (v, c) ∈ Epull} (42)

37

The pull function may only change containers connected by pull edges, and then only to delete
information from them6:

∀b ∈ Bc |φ
′(b) subbag φ(b) (43)

∀b ∈ B \Bc |φ
′(b) = φ(b) (44)

∀v ∈ Vc |ψ
′(v) subenv ψ(v) (45)

∀v ∈ V \ Vc |ψ
′(v) = ψ(v) (46)

The default behaviour of pull is to do nothing: pull = Id(Ωs × Local).

A.3.4 process()

The process() function acts as the main computation for the node. It modifies the local state of particles
and variables, including creating new particles and variables and destroying old ones. It does not modify
the system state.

process : (Ωs × Local) → (Ωs × Local) (47)

process((c, φ, ψ), (φl, ψl)) = ((c, φ, ψ), (φ′l, ψ
′
l)) (48)

This function is entirely application dependent. When c is a decision node, c ∈ Cd, the output Local
state shall contain information to determine the choice of the next node.

A.3.5 push()

The push() function adds information from the local state to connected containers. This modifies the
system state and preserves the local state.

push : (Ωs × Local) → (Ωs × Local) (49)

push((c, φ, ψ), (φl, ψl)) = ((c, φ′, ψ′), (φl, ψl)) (50)

The containers and environment nodes to which current node c can push are the ones attached by
push edges:

Bc = {b ∈ B | (c, b) ∈ Epush} (51)

Vc = {v ∈ V | (c, v) ∈ Epush} (52)

The push function may only change containers connected by push edges, and then only to add a new
object to the container7 with information from the local state:

∀b ∈ Bc |φ
′(b) combinedwith φ(b) (53)

∀b ∈ B \Bc |φ
′(b) = φ(b) (54)

∀v ∈ Vc |ψ
′(v) combinedwith ψ(v) (55)

∀v ∈ V \ Vc |ψ
′(v) = ψ(v) (56)

The default behaviour of push is to do nothing: push(ω, (φl, ψl)) = (ω, (φl, ψl)).

A.3.6 next()

The next() function moves the control pointer to the next node and destroys the local state. This
modifies the pointer node component of the system state.

next : (Ωs × Local) → Ωs (57)

next((c, φ, ψ), (φl, ψl)) = (c′, φ, ψ) (58)

The nodes to which current node pointer c can move to are defined by the control edge(s) from the
current node:

c′ ∈ target(c) (59)

This set is a singleton set, except for decision nodes. For decision nodes, the choice of which element
to go to next is provided in the Local information.

6subbag has the obvious definition: there may not be more particles of any given type after than before. subenv is
application dependent, but should conform to the idea of removing information.

7If an add is performed on a container to add a variable which already exists the behaviour is undefined and implemen-
tation dependent, updating is therefore done by pulling the variable to remove it and then push it to re-add it.

38

	1 Introduction
	2 Properties of Artificial Chemistries
	3 Modularisation: Components of an Artificial Chemistry System
	3.1 Particles
	3.2 Container Nodes
	3.3 Action Nodes
	3.4 Admin Nodes: sampler, observer, decision
	3.5 Termination Node
	3.6 Edges
	3.7 Graph as an Executable Algorithm

	4 Descriptive levels
	4.1 Expanding and summarising
	4.2 Node names
	4.3 StringCatChem: an illustrative toy example
	4.4 Macro Level
	4.5 Micro Level
	4.6 Physics Level
	4.7 Abstraction levels

	5 Static Graph MetaChem
	5.1 Control nodes and edges
	5.2 Control node subtypes
	5.3 Container nodes
	5.4 Examples from StringCatChem
	5.4.1 Local state
	5.4.2 Sampler node
	5.4.3 Observer node
	5.4.4 Action node
	5.4.5 Decision node

	6 Jordan Algebra Artificial Chemistry
	6.1 Overview of particles and linking
	6.1.1 Definitions and properties
	6.1.2 Atoms
	6.1.3 Composite particles

	6.2 Macro description of Jordan Algebra Artificial Chemistry
	6.3 Micro level description of linking in JA-AChem
	6.3.1 Expansion of macro-level read()
	6.3.2 Expansion of macro-level check()
	6.3.3 Expansion of macro-level pull()
	6.3.4 Expansion of macro-level process()
	6.3.5 Expansion of macro-level push()
	6.3.6 Clearing local containers

	6.4 Modifying JA-AChem
	6.4.1 Mass conservation
	6.4.2 Multiple tanks

	7 Swarm Chemistry
	7.1 Flocking in SwarmChem
	7.2 Macro description
	7.3 Micro description of Flocking
	7.3.1 read()
	7.3.2 check()
	7.3.3 pull()
	7.3.4 process()
	7.3.5 push()

	7.4 Example: Pulsing Eye

	8 Nested Chemistries
	8.1 Levels of chemistries
	8.2 General Method
	8.3 Implementation: Nested Chemistry
	8.3.1 Modular Systems
	8.3.2 Discussion

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work
	9.2.1 Other Combinations of AChems
	9.2.2 Static Graph MetaChem: reuse and toolsets
	9.2.3 Dynamic MetaChem
	9.2.4 Evolving MetaChem
	9.2.5 MetaChem as an AChem

	10 Acknowledgements
	A Appendix: Mathematical Formalism
	A.1 Static Graph MetaChem
	A.1.1 Nodes
	A.1.2 Edges
	A.1.3 Graphs

	A.2 Dynamic System State
	A.3 Transition Functions
	A.3.1 read()
	A.3.2 check()
	A.3.3 pull()
	A.3.4 process()
	A.3.5 push()
	A.3.6 next()

