98 research outputs found

    Low Bit Rate Video Coding

    Get PDF
    Variable length bit rate (VLBR) broadly encompasses video coding which mandates a temporal frequency of 10 frames per second (fps) or less. Object-based video coding represents a very promising option for VLBR coding, though the problems of object identification and segmentation need to be addressed by further research. Pattern-based coding is a simplified object segmentation process that is computationally much less expensive, though a real-time, content-dependent pattern generation approach will certainly improve its acceptance for VLBR coding. In this paper pattern based coding technique is used. In this paper, a very low bit-rate video coding algorithm that focuses on moving regions is performed. The aim is to improve the coding performance, which gives better subjective and objective quality than that of the conventional coding methods at the same bit rate. Eight patterns are pre-defined to approximate the moving regions in a macroblock. The patterns are then used for motion estimation and compensation to reduce the prediction errors. Furthermore, in order to increase the compression performance, the residual errors of a macroblock are rearranged into a block with no significant increase of high-order DCT coefficients. As a result, both the prediction efficiency and the compression efficiency are improved. This paper shows that using pattern based coding the compression ratio is better

    Cis-regulatory variation: significance in biomedicine and evolution

    No full text
    Cis-regulatory regions (CRR) control gene expression and chromatin modifications. Genetic variation at CRR in individuals across a population contributes to phenotypic differences of biomedical relevance. This standing variation is important for personalized genomic medicine as well as for adaptive evolution and speciation. This review focuses on genetic variation at CRR, its influence on chromatin, gene expression, and ultimately disease phenotypes. In addition, we summarize our understanding of how this variation may contribute to evolution. Recent technological and computational advances have accelerated research in the direction of personalized medicine, combining strengths of molecular biology and genomics. This will pave new ways to understand how CRR variation affects phenotypes and chart out possible avenues of intervention

    Exploiting Emotions via Composite Pretrained Embedding and Ensemble Language Model

    Get PDF
    Decisions in the modern era are based on more than just the available data; they also incorporate feedback from online sources. Processing reviews known as Sentiment analysis (SA) or Emotion analysis. Understanding the user's perspective and routines is crucial now-a-days for multiple reasons. It is used by both businesses and governments to make strategic decisions. Various architectural and vector embedding strategies have been developed for SA processing. Accurate representation of text is crucial for automatic SA. Due to the large number of languages spoken and written,  polysemy and syntactic or semantic issues were common. To get around these problems, we developed effective composite embedding (ECE), a method that combines the advantages of vector embedding techniques that are either context-independent (like glove & fasttext) or context-aware (like  XLNet) to effectively represent the features needed for processing.  To improve the performace towards emotion or  sentiment we proposed stacked ensemble model of deep lanugae models.ECE with Ensembled model is evaluated on balanced  dataset to prove that it is a reliable embedding technique and a generalised model for SA.In order to evaluate ECE, cutting-edge ML and Deep net language models are deployed and comapared. The model is evaluated using benchmark datset such as  MR, Kindle along with realtime tweet dataset of user complaints . LIME is used to verify the model's predictions and to provide statistical results for sentence.The model with ECE embedding provides state-of-art results with real time dataset as well

    Spices and condiments: safer option for treatment of hyperlipidemia

    Get PDF
    Hyperlipidemia is a lipoprotein metabolic disorder characterized by high serum Low density Lipoprotein and blood cholesterol. It is a major risk factors in the development and progression of atherosclerosis that eventually lead to cardiovascular diseases. This poses a major problem to majority of society because of the close correlation between cardiovascular diseases and lipid abnormalities. There are various features which are associated directly or indirectly as etiological factors viz. heredity, age, obesity, sex, diet, physical inactivity, hypertension, lifestyle disorders and various stress factors. For alleviation and treatment there are many ways such as allopathic medications, alternative systems like Ayurvedic, Diet control, lifestyle discipline etc. Recently Spice therapies are seen useful and effective. In India, Ayurveda and other Indian literature mentions the use of various plants and spices. Spices in diet are useful as they play effective role in the functioning of various body systems such as gastrointestinal, cardiovascular and nervous system. Along with proper food habits, diet which contains variety of spices which have been proved as hypolipidemic, can be effective in controlling hyperlipidemia. Spices used in day-to-day life as food, can also be used in the treatment of various human ailments. Along with the taste, flavor, colour and preservative property, spices also possess hypolipidemic effects. This review is focused mainly on the beneficial hypolipidemic effect of five spices (Dill, Garlic, Fenugreek, Ginger, Coriander) in the management of hyperlipidemia. This article is based on the traditional knowledge, mechanism of action for hypolipidemic activity and some experimental scientific studies done to support the use of these spices in the management of hyperlipidemia

    The Antioxidant Activity of the Leaves of Barleria grandiflora Dalz. (Acanthaceae)

    Get PDF
    Aqueous and hydro alcoholic extracts of the leaves of Barleria grandiflora Dalz. were evaluated for the antioxidant activity by the FTC and TBA methods. The results obtained in the present study indicate that the leaves of Barleria grandiflora are potential source of natural antioxidants. Initial phytochemical screenings of the extracts have shown the presence of flavanoids, tannins, saponins, carbohydrates and aminoacid

    Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor

    Get PDF
    One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR

    Phytochrome-Based Extracellular Matrix with Reversibly Tunable mechanical Properties

    No full text
    Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength‐specific, and dose‐ and space‐controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell‐compatible red/far‐red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics‐inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots

    p53 Interaction with JMJD3 Results in Its Nuclear Distribution during Mouse Neural Stem Cell Differentiation

    Get PDF
    Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis

    N 1 -methylpseudouridylation of mRNA causes +1 ribosomal frameshifting

    Get PDF
    In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1, 2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3–5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization
    • 

    corecore