78 research outputs found

    Transient analysis and control of a heat to power conversion unit based on a simple regenerative supercritical CO2 Joule-Brayton cycle

    Get PDF
    Supercritical carbon dioxide (sCO(2)) heat to power systems are a promising technology thanks to their potential for high efficiency and operational flexibility. However, their dynamic behaviour during part-load and transient operation is still not well understood and further research is needed. Additionally, there is not enough literature addressing suitable control approaches when the objective is to follow the dynamics of heat load supplied by the topping process to maximise the power recovery. The current research aims to fill these gaps by proposing a one-dimensional transient modelling formulation calibrated against the major components of a 50 kW(e) sCO(2) test facility available at Brunel University London. The dynamic analysis showed that the system quickly adapts to a 2800s transient heat load profile, proving the flexible nature of the sCO(2) system investigated. The turbine bypass, during startup and shutdown modes of operation, enabled gradual and safe build-up/decline of the pressures and temperatures throughout the loop. The regulation of the inventory in the range 20-60 kg allowed a 30% variation of the turbine inlet temperature with lower penalties on system performance than the turbomachinery speed control. The designed proportional-integral inventory controller showed a rapid response in the control of the turbine inlet temperature around the set point of 773 K during large variations of the heat load

    Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems

    Get PDF
    The paper presents a modelling methodology for Printed Circuit Heat Exchangers (PCHEs) in supercritical CO2 (sCO(2)) power systems. The PCHE model can be embedded in models of the full sCO(2) power unit for optimisation, transient simulation and control purposes. In particular, the purpose of the study is to assess the potential and limitations of lower order models in predicting the overall heat transfer performance of PCHEs. The heat transfer processes in the channels of the PCHE recuperator are modelled in 1-D and 3-D using commercial software platforms. The results show that predictions from the two modelling approaches are in good agreement, confirming that the 1-D approach can be used with confidence for fast simulation and analysis of PCHEs. Using the 1-D approach, the model was validated against manufacturer's data for a 630 kW PCHE recuperator, and subsequently used to simulate the performance of the heat exchanger at design and off-design operating conditions. Performance maps produced from the simulations, enable visualization of the influence of operating conditions on the heat transfer performance and pressure drops in the heat exchanger. Dynamic simulations under transient operating conditions show that the thermal expansion of the working fluid caused by a fast reduction in density and increase in pressure in the system, can be a concem, requiring careful management of the start-up process to avoid sudden changes in temperature and thermal stresses

    Enquête Sur Les Systèmes De Distribution D'air Et La Régulation De L'environnement Thermique Dans Les Installations De Traitement Des Aliments Réfrigérés

    Get PDF
    Air flow distribution in chilled food facilities plays a critical role not only in maintaining the required food products temperature but also because of its impact on the facility energy consumption and CO2 emissions. This paper presents an investigation of the thermal environment in existing food manufacturing facilities, with different air distribution systems including supply/return diffusers and fabric ducts, by means of both in-situ measurements and 3D CFD simulations. Measurements and CFD simulations showed that the fabric duct provides a better environment in the processing area in terms of even and low air flow if compared to that with the diffusers. Moreover, temperature stratification was identified as a key factor to be improved to reduce the energy use for the space cooling. Further modelling proved that air temperature stratification improves by relocating the fabric ducts at a medium level. This resulted in a temperature gradient increase up to 4.1 °C in the unoccupied zone

    Numerical study of air temperature distribution and refrigeration systems coupling for chilled food processing facilities

    Get PDF
    This paper presents an air temperature distribution and refrigeration system dynamic coupling model to assess the performance of air distribution systems used in chilled food processing areas and its energy consumption impact. The coupling consists of a CFD air flow/temperature distribution system model and a compression refrigeration system model developed in EES integrated in the TRNSYS platform. The model was tested and validated using experimental data collected from a scaled air distribution test rig in an environmental chamber showing a good agreement with the measured data (an hourly energy consumption error up to 5.3 %). The CFD/EES coupling model can be used to design energy efficient cooled air distribution systems capable to maintain the required thermal environment in chilled food processing facilities

    Crossing CO<sub>2</sub> equator with the aid of multi-ejector concept:A comprehensive energy and environmental comparative study

    Get PDF
    The ever-stricter regulations put into effect worldwide to significantly decrease the considerable carbon footprint of commercial refrigeration sector have forced the transition to eco-friendlier working fluids (e.g. CO2, R290, R1234ze(E), R450A, R513A). However, the identification of the most suitable long-term refrigerant is still today's major challenge for supermarkets located in high ambient temperature countries, especially as their air conditioning (AC) need is considered. The results of this theoretical study revealed that multi-ejector “CO2 only” systems can outperform R404A-, R290-, R1234ze(E)-, R134a-, R450A- and R513A-based solutions in an average-size supermarket located in various cities below the so-called “CO2 equator”. In fact, energy savings as well as reductions in environmental impact respectively up to 26.9% and 90.9% were estimated over conventional hydrofluorocarbon (HFC)-based solutions for the scenario including the AC demand. Also, the solution using multi-ejector block (in non-optimized operating conditions) enabled reducing the power input up to 50.3% over HFC-based units at outdoor temperatures from −10 °C to 5 °C. Finally, the study demonstrated that transcritical CO2 multi-ejector systems integrated with the AC unit allow potentially pushing the “CO2 equator” further South than Northern Africa. © 2018 Elsevier Ltd. All rights reserved.Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative studyacceptedVersio

    Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application

    Get PDF
    In this paper the impact on the store’s energy use by different refrigeration systems, remote and centralised, is investigated as well as their environmental impact. The study is performed using the energy simulation program EnergyPlus in a reference baseline model which has been verified against measured energy and environmental conditions data. The refrigeration system of the case study includes plugged-in display cabinets to serve both medium temperature (MT) and low temperature (LT) refrigeration loads. Centralised systems are compared with the remote plugged-in refrigeration cabinets. The different refrigeration systems studied are, a) two parallel centralised systems for MT and LT loads, b) two parallel cascade systems (R134a/CO2) for MT and LT loads and c) a transcritical CO2 booster. The study is performed for DSY London weather file to capture the risk of warmer than a typical year consequences in centralised refrigeration systems operation. Besides these refrigeration systems, the CO2 transcritical appears as the one of the most promising replacement in terms not only of energy use reduction due to its high efficiency in London climate but on its low contribution to global warming as well

    Potential for energy production from farm wastes using anaerobic digestion in the UK : An economic comparison of different size plants

    Get PDF
    Anaerobic digestion (AD) plants enable renewable fuel, heat, and electricity production, with their efficiency and capital cost strongly dependent on their installed capacity. In this work, the technical and economic feasibility of different scale AD combined heat and power (CHP) plants was analyzed. Process configurations involving the use of waste produced in different farms as feedstock for a centralized AD plant were assessed too. The results show that the levelized cost of electricity are lower for large-scale plants due to the use of more efficient conversion devices and their lower capital cost per unit of electricity produced. The levelized cost of electricity was estimated to be 4.3 p/kWhe for AD plants processing the waste of 125 dairy cow sized herds compared to 1.9 p/kWhe for AD plants processing waste of 1000 dairy cow sized herds. The techno-economic feasibility of the installation of CO2 capture units in centralized AD-CHP plants was also undertaken. The conducted research demonstrated that negative CO2 emission AD power generation plants could be economically viable with currently paid feed-in tariffs in the UK

    Dynamic modeling and optimization of an ORC unit equipped with plate heat exchangers and turbomachines

    Get PDF
    Nowadays environmental concerns call for a transition towards an economy based on fossil fuels to a low carbon one. In order to achieve this goal, efficiency optimization of existing energy systems through waste heat to power conversion units based on bottoming Organic Rankine Cycles (ORC) is one of the actions that appears to be suitable and effective both from cost and environmental perspectives. Indeed, these units are able to increase the overall efficiency of production processes, existing facilities and renewable power plants with a limited payback time. However, despite the increasing number of ORC installations at megawatt scale, the waste heat rejected by industrial processes has rather a widespread nature. Hence, ORC units with a power output in the range of kilowatts should be developed to address this opportunity for heat recovery and for business. In the current research activity, a dynamic model of an ORC system was developed in a commercial 1D Computer Aided Engineering software platform. Sub-models of the two plate heat exchangers and of the multi-stage centrifugal pump were developed and calibrated using performance data of industrial components at design and off-design conditions. On the other hand, the R245fa radial turbine design was accomplished using a design procedure that provided geometrical and performance data for the mapping of the device by means of a 1D tool. A steady-state off-design analysis at different operating conditions at the evaporator was further carried out optimizing pump and turbine speeds to maximize the net power output. Furthermore, the thermal inertial effects at the evaporator were assessed with reference to a sample heat load profile of the water hot source and at different time scales.The authors would like to acknowledge funding from Research Council UK (RCUK), Grant No. EP/K011820/1

    Modelling and off-design performance optimisation of a trilateral flash cycle system using two-phase twin-screw expanders with variable built-in volume ratio

    Get PDF
    © 2020 The Author(s). This research work presents a numerical chamber model of a two-phase twin-screw expander and its further integration in a one-dimensional model of a Trilateral Flash Cycle (TFC) system for low-grade heat to power conversion applications. The novel feature of the expander is the capability of changing the built-in volume ratio (BIVR) of the machine through a sliding valve in the casing that opens an additional suction port. Lowering the BIVR from 5.06 to 2.63 results in an improvement of the volumetric efficiency from 53% to 77% but also in a reduction of the specific indicated power from 4.77 kJ/kg to 3.56 kJ/kg. Parametric analysis on several degrees of freedom of the full TFC system concluded that expander speed and BIVR are the variables that mostly impact the net power output of the unit. An optimisation study enabled the net power output of the TFC system, at design point, to increase from 81 kW to 103 kW.European Union's Horizon 2020 Research and Innovation Programme; Innovate UK; Engineering and Physical Sciences Research Council UK; Research Councils UK; Spirax Sarco Engineering PLC; Howden Compressors Ltd; Tata Steel; Artic Circle Ltd; Cooper Tires Ltd; Industrial Power Units Ltd.(i) the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 680599, (ii) Innovate UK (project no. 61995-431253, (iii) Engineering and Physical Sciences Research Council UK (EPSRC), grant no. EP/P510294/1 and (iv) Research Councils UK (RCUK), grant no. EP/K011820/1
    corecore