924 research outputs found

    Bayesian methods of astronomical source extraction

    Get PDF
    We present two new source extraction methods, based on Bayesian model selection and using the Bayesian Information Criterion (BIC). The first is a source detection filter, able to simultaneously detect point sources and estimate the image background. The second is an advanced photometry technique, which measures the flux, position (to sub-pixel accuracy), local background and point spread function. We apply the source detection filter to simulated Herschel-SPIRE data and show the filter's ability to both detect point sources and also simultaneously estimate the image background. We use the photometry method to analyse a simple simulated image containing a source of unknown flux, position and point spread function; we not only accurately measure these parameters, but also determine their uncertainties (using Markov-Chain Monte Carlo sampling). The method also characterises the nature of the source (distinguishing between a point source and extended source). We demonstrate the effect of including additional prior knowledge. Prior knowledge of the point spread function increase the precision of the flux measurement, while prior knowledge of the background has onlya small impact. In the presence of higher noise levels, we show that prior positional knowledge (such as might arise from a strong detection in another waveband) allows us to accurately measure the source flux even when the source is too faint to be detected directly. These methods are incorporated in SUSSEXtractor, the source extraction pipeline for the forthcoming Akari FIS far-infrared all-sky survey. They are also implemented in a stand-alone, beta-version public tool that can be obtained at http://astronomy.sussex.ac.uk/\simrss23/sourceMiner\_v0.1.2.0.tar.gzComment: Accepted for publication by ApJ (this version compiled used emulateapj.cls

    Lawyers in America: A Profession in Search of Direction

    Get PDF

    Lawyers in America: A Profession in Search of Direction

    Get PDF

    Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm

    Get PDF
    We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/

    Submillimeter-wave antennas on thin membranes

    Get PDF
    Submillimeter-wave antennas with bismuth microbolometer detectors have been fabricated on 1-μm thick silicon-oxynitride membranes. This approach results in better patterns than previous lens-coupled integrated circuit antennas, and eliminates the dielectric loss associated with the substrate lens. Measurements on a wideband log-periodic antenna at 700 GHz, 380 GHz and 167 GHz, and on a 700 GHz log-periodic imaging array, show no sidelobee and a 3-dB beamwidth between 40° and 50°. Also, the effective area can be increased by 5 dB by the use of a back-shorting mirror. Possible application areas are superconducting tunnel junction receivers for radio astronomy and imaging arrays for plasma diagnostics

    Discovering transcriptional modules by Bayesian data integration

    Get PDF
    Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs

    Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs

    Get PDF
    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.Comment: 15 pages, 21 figures, LIGO DCC P160013

    Bayesian correlated clustering to integrate multiple datasets

    Get PDF
    Motivation: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured via parameters that describe the agreement among the datasets. Results: Using a set of 6 artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real S. cerevisiae datasets. In the 2-dataset case, we show that MDI’s performance is comparable to the present state of the art. We then move beyond the capabilities of current approaches and integrate gene expression, ChIP-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques – as well as to non-integrative approaches – demonstrate that MDI is very competitive, while also providing information that would be difficult or impossible to extract using other methods

    CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods

    Full text link
    We present coincident observations of the Cosmic Microwave Background (CMB) from the Very Small Array (VSA) and Cosmic Background Imager (CBI) telescopes. The consistency of the full datasets is tested in the map plane and the Fourier plane, prior to the usual compression of CMB data into flat bandpowers. Of the three mosaics observed by each group, two are found to be in excellent agreement. In the third mosaic, there is a 2 sigma discrepancy between the correlation of the data and the level expected from Monte Carlo simulations. This is shown to be consistent with increased phase calibration errors on VSA data during summer observations. We also consider the parameter estimation method of each group. The key difference is the use of the variance window function in place of the bandpower window function, an approximation used by the VSA group. A re-evaluation of the VSA parameter estimates, using bandpower windows, shows that the two methods yield consistent results.Comment: 10 pages, 6 figures. Final version. Accepted for publication in MNRA

    Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics

    Get PDF
    Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC) algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data. The implementation of GBHC is available at https://sites. google.com/site/gaussianbhc
    corecore