1,823 research outputs found

    Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    Get PDF
    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location

    Peri-urban agriculture in Barcelona. Outlining landscape dynamics vis \ue0 vis socio-environmental functions

    Get PDF
    Dispersed urbanisation promotes complex relationships between rural areas and the urban fringe, with emerging new functions for peri-urban agriculture (PUA). Although PUA is a type of productive farming of interest for urban planning due to its recognised functions, comparative analyses are needed to relate farm dynamics to fringe landscape modifications in different socio-economic contexts. Given the current limitation of specific methodologies to analyse PUA dynamics, a quantitative approach profiling farm types and the related landscape structure in an expanding urban region, the Metropolitan Area of Barcelona, is proposed. Results indicate that PUA is based on five typologies with different territorial values, as a consequence of diverse economic relevance, socio-environmental weight and landscape prominence. Based on these results, a conservation strategy aimed at preserving the residual PUA landscape is proposed through the promotion of a polycentric functional network of farming with natural vegetation

    Supporting the learning of deaf students in higher education: a case study at Sheffield Hallam University

    Get PDF
    This article is an examination of the issues surrounding support for the learning of deaf students in higher education (HE). There are an increasing number of deaf students attending HE institutes, and as such provision of support mechanisms for these students is not only necessary but essential. Deaf students are similar to their hearing peers, in that they will approach their learning and require differing levels of support dependant upon the individual. They will, however, require a different kind of support, which can be technical or human resource based. This article examines the issues that surround supporting deaf students in HE with use of a case study of provision at Sheffield Hallam University (SHU), during the academic year 1994-95. It is evident that by considering the needs of deaf students and making changes to our teaching practices that all students can benefit

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Modeling the Enceladus plume--plasma interaction

    Full text link
    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure

    Optimization of Silicon Extraction from Tanjung Tiram Asahan Natural Sand through Magnesiothermic Reduction

    Get PDF
    We carried out silicon extraction from the natural resources of Tanjung Tiram Asahan, Batu Bara Regency, North Sumatra through variation of heating temperatures and magnesiothermic reduction. Prior to the extraction, the sand from the natural resource was refined until the solid white silica powder was separated. The reaction conditions were performed at various heating temperatures in a furnace, as follows: at 750 (2 hours), 800 (3 hours), 850 (3 hours), 900 (3 hours), and 950 (3 hours). Optimization of the extraction reaction conditions was then performed using magnesiothermic reduction at several silica and magnesium ratios, i.e. 1:1.125, 1:1.50, 1:1.75, 1:1.20, and 1:1.25. The refined silica, together with all of the silicon products from the extraction, was characterized using XRD and analyzed. The morphology of the reaction product was characterized using an electron microscope. The results showed that changes to the silicon products after extraction varied, depending on temperature. Optimization of silicon extraction from silica was obtained at 800°C for 3 hours, with a silica and magnesium ratio of 1:1.75

    Phonon and Elastic Instabilities in MoC and MoN

    Full text link
    We present several results related to the instability of MoC and MoN in the B1 (sodium chloride) structure. These compounds were proposed as potential superconductors with moderately high transition temperatures. We show that the elastic instability in B1-structure MoN, demonstrated several years ago, persists at elevated pressures, thus offering little hope of stabilizing this material without chemical doping. For MoC, another material for which stoichiometric fabrication in the B1-structure has not proven possible, we find that all of the cubic elastic constants are positive, indicating elastic stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as well), further illustrating the rich behavior of carbo-nitride materials. We also present additional electronic structure results for several transition metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in the properties of these materials. Deviations from strict electron counting dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR

    Application of coconut battery waste to graphic as an alternative electrode on primary battery cells

    Get PDF
    Coconut shell is one of the potential biomass as carbon sources. Coconut shell is converted to charcoal through the carbonization process. The potential of charcoal from coconut shells can be synthesized into graphene. Graphene is a derivative of one of the carbon allotropes, namely graphite, where carbon is in the form of thin plates with sp2 orbitals arranged hexagonally. The process of making graphene which is coconut shell dried in the sun then pyrolysis into charcoal then mixed with activated carbon as a reducing agent at 600 ° C for 1 hour to produce graphene. The graphene produced is characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX). The results by XRD analysis showed the resulting peaks were not sharp and slightly widened at the diffraction peaks at 24 ° and 44 °. The results of SEM-EDX analysis at 4000x magnification show the surface size and shape of the structure that is smaller, thinner and reduced buildup on the graphene structure. graphene that has been successfully synthesized was tested on a coin battery. The coin battery cathode which was replaced with graphene succeeded in turning on the light. &nbsp
    • …
    corecore