14 research outputs found

    Upgrade of the CODALEMA EAS radio-detection experiment

    Get PDF
    International audienceIn order to improve the performances of the EAS radio-measurements, the CODALEMA has been upgraded. The detection array has been widen and new types of antennas and particle detectors are used. First results and new possibilities given by this new configuration will be presented

    Radioelectric Field Features of Extensive Air Showers Observed with CODALEMA

    Full text link
    Based on a new approach to the detection of radio transients associated with extensive air showers induced by ultra high energy cosmic rays, the experimental apparatus CODALEMA is in operation, measuring about 1 event per day corresponding to an energy threshold ~ 5. 10^16 eV. Its performance makes possible for the first time the study of radio-signal features on an event-by-event basis. The sampling of the magnitude of the electric field along a 600 meters axis is analyzed. It shows that the electric field lateral spread is around 250 m (FWHM). The possibility to determine with radio both arrival directions and shower core positions is discussed.Comment: Accepted for publication in Astroparticle Physic

    An active dipole for cosmic ray radiodetection with CODALEMA

    Get PDF
    A paraître dans NIM AInternational audienceThe CODALEMA experiment detects the electromagnetic pulses radiated during the development of Extensive Air Showers (EAS). Since 2005, in addition to spiral log-periodic antennas, ultra broad bandwidth active dipoles have been designed to detect the full electric pulse shape of these signals. A few performances of these new detectors are presented

    The TIANSHAN Radio Experiment for Neutrino Detection

    Full text link
    An antenna array devoted to the autonomous radio-detection of high energy cosmic rays is being deployed on the site of the 21 cm array radio telescope in XinJiang, China. Thanks in particular to the very good electromagnetic environment of this remote experimental site, self-triggering on extensive air showers induced by cosmic rays has been achieved with a small scale prototype of the foreseen antenna array. We give here a detailed description of the detector and present the first detection of extensive air showers with this prototype.Comment: 37 pages, 15 figures. Astroparticle Physics (in press

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Geomagnetic origin of the radio emission from cosmic ray induced air showers observed by CODALEMA

    Get PDF
    The new setup of the CODALEMA experiment installed at the Radio Observatory in Nancay, France, is described. It includes broadband active dipole antennas and an extended and upgraded particle detector array. The latter gives access to the air shower energy, allowing us to compute the efficiency of the radio array as a function of energy. We also observe a large asymmetry in counting rates between showers coming from the North and the South in spite of the symmetry of the detector. The observed asymmetry can be interpreted as a signature of the geomagnetic origin of the air shower radio emission. A simple linear dependence of the electric field with respect to vxB is used which reproduces the angular dependencies of the number of radio events and their electric polarity.Comment: 9 pages, 15 figures, 1 tabl

    Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad.</p> <p>Methods</p> <p>A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the <it>Anopheles gambiae </it>complex and to the <it>An. funestus </it>group were identified by molecular diagnostic tools. <it>Plasmodium falciparum </it>infection and blood meal sources were detected by ELISA.</p> <p>Results</p> <p>Nine anopheline species were collected by the two sampling methods. The most aggressive species were <it>An. arabiensis </it>(51 bites/human/night), <it>An. pharoensis </it>(12.5 b/h/n), <it>An. funestus </it>(1.5 b/h/n) and <it>An. ziemanni </it>(1.3 b/h/n). The circumsporozoite protein rate was 1.4% for <it>An. arabiensis</it>, 1.4% for <it>An. funestus</it>, 0.8% for <it>An. pharoensis </it>and 0.5% for <it>An. ziemanni</it>. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by <it>An. arabiensis </it>(84.5%) and <it>An. pharoensis </it>(12.2%). <it>Anopheles funestus </it>and <it>An. ziemanni </it>played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening.</p> <p>Conclusion</p> <p>The present study revealed the implication of <it>An. pharoensis </it>in malaria transmission in the irrigated rice fields of Goulmoun, complementing the major role played by <it>An. arabiensis</it>. The transmission period did not depend upon irrigation. Correct use of insecticide treated nets in this area may be effective for vector control although additional protective measures are needed to prevent pre-bedtime exposure to the bites of infected anophelines.</p

    Radiodétection et caractérisation de l'émission radio des gerbes cosmiques d'énergie supérieure à 10^16 eV avec l'expérience CODALEMA

    Get PDF
    Ultra high energy cosmic rays, extraterrestrial particles which nature and origin remain today uncertain, are ordinarily studied by using two major techniques of EAS (Extensive Air Shower) detection: ground particles detectors or fluorescence light telescopes. Appeared for the first time in the 60', researches on EAS radiodetection by measuring the electric field induced by shower's charged particles was first stopped because of technical difficulties. With the developpement of fast electronic, radiodetection technique became again potentially interesting for cosmic rays study. The CODALEMA experiment, since 2002, use and improve the radiodetection method. These last years, the experimental setup was largely modified, original log-periodic antennas were replaced by active dipole dedicated to radiodetection and the trigger, realized by an array of 17 scintillators, allow now to estimate the primary cosmic ray energy. Present objective of CODALEMA is to characterize the electric signal induced by an EAS, according to the physical parameters of the shower. In this thesis the main results obtain by CODALEMA are presented. The evidences for a geomagnetic origin of EAS radioelectric field is one of the more important. Moreover a first study of electric field lateral distribution functions and the correlation between the primary particle energies with the amplitude of the EAS electric field are also discussed.L'étude des rayons cosmiques de ultra haute énergie, particules dont la nature et l'origine reste encore aujourd'hui inconnue, s'effectue par la mesure de cascade de particule appelée gerbes cosmiques créées lors de leur interaction avec l'atmosphère terrestre. Deux techniques permettent de détecter et de caractériser ces gerbes : la détection au sol par réseaux de détecteurs de particules et la détection de la lumière de fluorescence émise par la gerbe. Idée datant des années 1960, la radiodétection de gerbes cosmiques par la mesure du champ électrique induit par les particules chargées de la cascade fut à l'époque abandonnée à cause de difficultés techniques. Créée en 2002, l'expérience CODALEMA a dans sa première configuration permis de prouver la faisabilité et l'intérêt de la radiodétection pour l'étude des rayons cosmiques. L'expérience a depuis subi une évolution majeure en remplaçant les antennes logpériodiques par des dipôles actifs dédiés à la radiodétection et en installant un trigger réalisé par un réseau de 17 scintillateurs capables de fournir une estimation de l'énergie des particules primaires. L'objectif de CODALEMA est de caractériser le signal électrique induit par une gerbe cosmique en fonction des paramètres physiques de la gerbe. Cette thèse présente, entre autre, les distributions angulaires des directions d'arrivées des gerbes mesurées par CODALEMA. Elles permettent pour la première fois de prouver l'origine géomagnétique du champ électrique induit par une gerbe. Les distributions latérales de champ électrique induit, ainsi que la corrélation entre l'énergie du primaire et l'amplitude du signal électrique sont également présentées

    UHECR observed by the radiodetection experiment CODALEMA

    No full text
    The radiodetection experiment CODALEMA allows to study, on an event-by-event basis, cosmic ray air showers through the detection of the radiated electric field. 2 major upgrades have been made in September 2006: - a new antenna array made up of 16 active dipole antennas, arranged in a cross shape. - 13 new particule detector providing more accurate informations on air showers: primary cosmic ray energy estimation, core shower position... Results from 6 months of measurements: radiodetection efficiency versus energy, arrival direction distribution or showers lateral electric field dependence, will be discussed. Full analysis of a high energy event will be presented
    corecore