9 research outputs found

    3 Derivation and internal validation of a clinical decision rule to guide whole body computed tomography scanning in trauma.

    Get PDF
    There are no widely accepted validated clinical decision rules for the use of WBCT in trauma. Given the potential risks and costs, there is a clear need for a clinical decision rule (CDR) to safely guide targeted use of WBCT. We aimed to derive a CDR to guide clinical decisions on WBCT utilisation by detecting patients at high and low risk of multi-region trauma.We retrospectively identified consecutive patients who had presented to a major trauma centre with suspected major trauma. Study took place at Aintree University Hospital, Merseyside. After extracting data, we derived a clinical decision rule for detection of multi-region trauma by logistic regression and recursive partitioning. The primary outcome was defined as injuries of AIS≄2 in two or more body regions, while the secondary outcome was the presence of two injuries of AIS≄3 in two or more body regions. This rule was cross-validated on the original sample using bootstrapping.1608 patients were included in the study. The derived model combined a bespoke physiological score with mechanistic and anatomical factors. The physiological score identified the risk of multi-region injury at various cut-offs of age, systolic blood pressure, GCS, heart rate and respiratory rate. Patients were further categorised according to mechanism of injury and clinical findings, and specific physiological scores were applied to each category to determine which patients in these categories required WBCT. 'High risk' injury mechanisms included high falls and unprotected road traffic collisions. Clinical signs of injury were categorised by body region, including the head, chest, abdomen and pelvis (figure 1). The overall sensitivity of the clinical decision rule for the primary objective was 96.0% (95% CI:94.8 to 97.2) while the specificity was36.1% (95% CI:33.3 to 39.0). The negative likelihood ratio was 0.11. For the secondary objective the sensitivity was 98.5%, the negative likelihood ratio 0.04.emermed;34/12/A861-a/F1F1F1Figure 1 CONCLUSION: This study derived a two stage CDR which was highly sensitive for identifying patients at high risk of multiregion injury. A prospective external validation study is now required to further refine and improve this model. This could provide a useful screening tool in the future

    Early and empirical high-dose cryoprecipitate for hemorrhage after traumatic injury: The CRYOSTAT-2 randomized clinical trial

    Get PDF
    Critical bleeding is associated with a high mortality rate in patients with trauma. Hemorrhage is exacerbated by a complex derangement of coagulation, including an acute fibrinogen deficiency. Management is fibrinogen replacement with cryoprecipitate transfusions or fibrinogen concentrate, usually administered relatively late during hemorrhage. To assess whether survival could be improved by administering an early and empirical high dose of cryoprecipitate to all patients with trauma and bleeding that required activation of a major hemorrhage protocol. CRYOSTAT-2 was an interventional, randomized, open-label, parallel-group controlled, international, multicenter study. Patients were enrolled at 26 UK and US major trauma centers from August 2017 to November 2021. Eligible patients were injured adults requiring activation of the hospital's major hemorrhage protocol with evidence of active hemorrhage, systolic blood pressure less than 90 mm Hg at any time, and receiving at least 1 U of a blood component transfusion. Patients were randomly assigned (in a 1:1 ratio) to receive standard care, which was the local major hemorrhage protocol (reviewed for guideline adherence), or cryoprecipitate, in which 3 pools of cryoprecipitate (6-g fibrinogen equivalent) were to be administered in addition to standard care within 90 minutes of randomization and 3 hours of injury. The primary outcome was all-cause mortality at 28 days in the intention-to-treat population. Among 1604 eligible patients, 799 were randomized to the cryoprecipitate group and 805 to the standard care group. Missing primary outcome data occurred in 73 patients (principally due to withdrawal of consent) and 1531 (95%) were included in the primary analysis population. The median (IQR) age of participants was 39 (26-55) years, 1251 (79%) were men, median (IQR) Injury Severity Score was 29 (18-43), 36% had penetrating injury, and 33% had systolic blood pressure less than 90 mm Hg at hospital arrival. All-cause 28-day mortality in the intention-to-treat population was 26.1% in the standard care group vs 25.3% in the cryoprecipitate group (odds ratio, 0.96 [95% CI, 0.75-1.23]; P = .74). There was no difference in safety outcomes or incidence of thrombotic events in the standard care vs cryoprecipitate group (12.9% vs 12.7%). Among patients with trauma and bleeding who required activation of a major hemorrhage protocol, the addition of early and empirical high-dose cryoprecipitate to standard care did not improve all cause 28-day mortality. ClinicalTrials.gov Identifier: NCT04704869; ISRCTN Identifier: ISRCTN14998314

    Are first rib fractures a marker for other life-threatening injuries in patients with major trauma? A cohort study of patients on the UK Trauma Audit and Research Network database

    Get PDF
    Background: First rib fractures are considered indicators of increased morbidity and mortality in major trauma. However, this has not been definitively proven. With an increased use of CT and the potential increase in detection of first rib fractures, re-evaluation of these injuries as a marker for life-threatening injuries is warranted. Methods: Patients sustaining rib fractures between January 2012 and December 2013 were investigated using data from the UK Trauma Audit and Research Network. The prevalence of life-threatening injuries was compared in patients with first rib fractures and those with other rib fractures. Multivariate logistic regression was performed to determine the association between first rib fractures, injury severity, polytrauma and mortality. Results: There were 1683 patients with first rib fractures and 8369 with fractures of other ribs. Life-threatening intrathoracic and extrathoracic injuries were more likely in patients with first rib fractures. The presence of first rib fractures was a significant predictor of injury severity (Injury Severity Score >15) and polytrauma, independent of mechanism of injury, age and gender with an adjusted OR of 2.64 (95% CI 2.33 to 3.00) and 2.01 (95% CI 1.80 to 2.25), respectively. Risk-adjusted mortality was the same in patients with first rib fractures and those with other rib fractures (adjusted OR 0.97, 95% CI 0.79 to 1.19). Conclusion: First rib fractures are a marker of life-threatening injuries in major trauma, though they do not independently increase mortality. Management of patients with first rib fractures should focus on identification and treatment of associated life-threatening injuries
    corecore