23 research outputs found

    Development of an animal-borne blood sample collection device and its deployment for the determination of cardiovascular and stress hormones in phocid seals

    Get PDF
    The research was supported by Bilateral Program between Japan and the United Kingdom and a Grant-in-Aid for Scientific Research (23247010) to Y. Takei and by Grant-in-Aid for challenging Exploratory Research (15K14567) to I. Suzuki from the Japan Society for the Promotion of Science. This work was also supported by funding from the U.K. Natural Environment Research Council (Grant SMRU1001).An animal-borne blood sampler with data-logging functions was developed for phocid seals, which collected two blood samples for the comparison of endocrino-logical/biochemical parameters under two different conditions. The sampler can be triggered by preset hydrostatic pressure, acceleration (descending or ascending), temperature, and time, and also man-ually by light. The sampling was reliable with 39/50 (78%) successful attempts to collect blood samples. Contamination of fluids in the tubing to the next blood sample was 1%, following the prior clearance of the tubing to a waste syringe. In captive harbor seals (Phoca vitulina), the automated blood-sampling method was less stressful than direct blood withdrawal, as evidenced by lower levels of stress hormones (P < 0.05 for ACTH and P = 0.078 for cortisol). HPLC analyses showed that both cortisol and cortisone were circu-lating in seal blood. Using the sampler, plasma levels of cardiovascular hormones, atrial natriuretic peptide (ANP), AVP, and ANG II were compared in grey seals (Halichoerus grypus), between samples collected when the animals were on land and in the water. HPLC analyses determined that [Met12] ANP (1-28) and various forms of angiotensins (ANG II, III, and IV) were circulating in seal blood. Although water immersion profoundly changes the plasma levels of cardiovascular hormones in terrestrial mammals, there were only tendencies toward an increase in ANP (P = 0.069) and a decrease in AVP (P = 0.074) in the seals. These results suggest that cardiovascular regulation in phocid seals may have undergone adaptation during evolution of the carnivore to a semiaquatic lifestyle.PostprintPeer reviewe

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Can ethograms be automatically generated using body acceleration data from free-ranging birds?

    Get PDF
    An ethogram is a catalogue of discrete behaviors typically employed by a species. Traditionally animal behavior has been recorded by observing study individuals directly. However, this approach is difficult, often impossible, in the case of behaviors which occur in remote areas and/or at great depth or altitude. The recent development of increasingly sophisticated, animal-borne data loggers, has started to overcome this problem. Accelerometers are particularly useful in this respect because they can record the dynamic motion of a body in e.g. flight, walking, or swimming. However, classifying behavior using body acceleration characteristics typically requires prior knowledge of the behavior of free-ranging animals. Here, we demonstrate an automated procedure to categorize behavior from body acceleration, together with the release of a user-friendly computer application, “Ethographer”. We evaluated its performance using longitudinal acceleration data collected from a foot-propelled diving seabird, the European shag, Phalacrocorax aristotelis. The time series data were converted into a spectrum by continuous wavelet transformation. Then, each second of the spectrum was categorized into one of 20 behavior groups by unsupervised cluster analysis, using k-means methods. The typical behaviors extracted were characterized by the periodicities of body acceleration. Each categorized behavior was assumed to correspond to when the bird was on land, in flight, on the sea surface, diving and so on. The behaviors classified by the procedures accorded well with those independently defined from depth profiles. Because our approach is performed by unsupervised computation of the data, it has the potential to detect previously unknown types of behavior and unknown sequences of some behaviors

    Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport

    No full text
    It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass−1/3. In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8–2.3 m s−1 were significantly related to mass0.08 and stroke frequencies were proportional to mass−0.29. These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)1/3 independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass0.05; and (iii) stroke frequency is proportional to mass−0.28. The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive

    Inter-colony differences in the incubation pattern of streaked shearwaters in relation to the local marine environment

    No full text
    Foraging trip duratiom of breeding seabirds is affected by characteristics of available feeding habitat in the marine environment, which may in turn, generate inter-colony difference in the patterns of nest attendance. Here, nest attendance patterns and foraging areas of Streaked Shearwaters (Calonectris leucomelas) during their incubation period were examined using global location sensors. The study was conducted at Sangan (SI) and Mikura Islands (MI) in the northwstern Pacific, and Awa Island (AI) in the Japan Sea during 2006-2009. The duration of incubation shifts showed significant inter-colony difference, but no sex-related difference. Shearwaters from SI had shorter mean incubation shifts (5.6 days on average; range 3.0-8.0 days) than those from MI (7.2 days; range 4.8-10.7 days) adn AI (6.9 days;range 6.0-9.7 days). During the incubation period, Si adn MI shearwaters foraged in the northwestern Pacific's Kuroshio-Oyashio transition area, while shearwaters from AI mostly foraged in the Japan Sea
    corecore