258 research outputs found

    Detecting itinerant single microwave photons

    Get PDF
    Single photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime however, a single photon detector has remained elusive although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90\% with existing technologies and are ripe for experimental investigations.Comment: 11 pages, 8 figure

    Evaluation of the Effect of Radio Frequency Interference on Global Positioning System (GPS) Accuracy via GPS Simulation

    Get PDF
    In this study, Global positioning system (GPS) simulation is employed to study the effect of radio frequency interference (RFI) on the accuracy of two handheld GPS receivers; Garmin GPSmap 60CSx (evaluated GPS receiver) and Garmin GPSmap 60CS (reference GPS receiver). Both GPS receivers employ the GPS L1 coarse acquisition (C/A) signal. It was found that with increasing interference signal power level, probable error values of the GPS receivers increase due to decreasing carrier-to-noise density (C/N0) levels for GPS satellites tracked by the receivers. Varying probable error patterns are observed for readings taken at different locations and times. This was due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location/time dependent. In general, the highest probable error values were observed for readings with the highest position dilution of precision (PDOP) values, and vice versa.Defence Science Journal, 2012, 62(5), pp.338-347, DOI:http://dx.doi.org/10.14429/dsj.62.160

    Quantum nondemolition detection of a propagating microwave photon

    Get PDF
    The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies

    Giant Cross Kerr Effect for Propagating Microwaves Induced by an Artificial Atom

    Get PDF
    We have investigated the cross Kerr phase shift of propagating microwave fields strongly coupled to an artificial atom. The artificial atom is a superconducting transmon qubit in an open transmission line. We demonstrate average phase shifts of 11 degrees per photon between two coherent microwave fields both at the single-photon level. At high control power, we observe phase shifts up to 30 degrees. Our results provide an important step towards quantum gates with propagating photons in the microwave regime.Comment: 5 pages, 4 figure

    Suitability of Killai backwaters for prawn farming-a preliminary micro level survey

    Get PDF
    Brackishwater areas have been given much importance for prawn farming. No information was available on the Killai backwaters about factors like water quality, topography, contour, extent of the area, tidal amplitude, seed potential and possibilities of flooding etc. Hence during 1982-'84 Klllai area was thoroughly surveyed on the above aspects and the results have been discussed in this paper. From this it is inferred that a total area of about 155 ha is readily available for undertaking both pond and pen culture in this backwater

    Prediction of Alzheimer Disease using LeNet-CNN model with Optimal Adaptive Bilateral Filtering

    Get PDF
    Alzheimer's disease is a kind of degenerative dementia that causes progressively worsening memory loss and other cognitive and physical impairments over time. Mini-Mental State Examinations and other screening tools are helpful for early detection, but diagnostic MRI brain analysis is required. When Alzheimer's disease (AD) is detected in its earliest stages, patients may begin protective treatments before permanent brain damage has occurred. The characteristics of the lesion sites in AD affected role, as identified by MRI, exhibit great variety and are dispersed across the image space, as demonstrated in cross-sectional imaging investigations of the disease. Optimized Adaptive Bilateral filtering using a deep learning model was suggested as part of this study's approach toward this end. Denoising the pictures with the help of the suggested adaptive bilateral filter is the first stage (ABF). The ABF improves denoising in edge, detail, and homogenous areas separately. After then, the ABF is given a weight, and the Adaptive Equilibrium Optimizer is used to determine the best possible value for that weight (AEO). LeNet, a CNN model, is then used to complete the AD organization. The first step in using the LeNet-5 network model to identify AD is to study the model's structure and parameters. The ADNI experimental dataset was used to verify the suggested technique and compare it to other models. The experimental findings prove that the suggested method can achieve a classification accuracy of 97.43%, 98.09% specificity, 97.12% sensitivity, and 89.67% Kappa index. When compared against competing algorithms, the suggested model emerges victorious

    Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds

    Full text link
    Inelastic neutron scattering investigation on ferromagnetic Kondo lattice compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is reported. The thermal evolution of the quasielastic response shows that the Kondo interactions dominate over the RKKY interactions with increase in Ga concentration from 0.7 to 1.3. This is related to the increase in k-f hybridization with increasing Ga concentration. The high energy response indicates the ground state to be split by crystal field in all three compounds. Using the experimental results we have calculated the crystal field parameters in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    Genome sequence of an Enterobacter helveticus strain, 1159/04 (= LMG 23733), isolated from fruit powder

    Full text link
    We report the draft genome sequence of Enterobacter helveticus strain LMG 23733, isolated from fruit powder. The draft genome assembly for E. helveticus strain LMG 23733 has a size of 4,635,476 bp and a G+C content of 55.9%

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore