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The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing
goal in optics, with applications in quantum information and measurement. Realizing such a detector is
complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies,
very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we
show how this type of interaction can be used to realize a quantum nondemolition measurement of a single
propagating microwave photon. The scheme we propose uses a chain of solid-state three-level systems
(transmons) cascaded through circulators which suppress photon backscattering. Our theoretical analysis
shows that microwave-photon detection with fidelity around 90% can be realized with existing

technologies.
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Quantum mechanics tells us that a measurement perturbs
the state of a quantum system. In the most extreme case,
this leads to the destruction of the measured quantum
system. By coupling the system to a quantum probe, a
quantum nondemolition [1] (QND) measurement can be
realized, where the system is not destroyed by the meas-
urement. Such a property is crucial for quantum error
correction [2], state preparation by measurement [3,4], and
one-way quantum computing [5]. For microwave frequen-
cies, detection of confined photons in high-Q cavities has
been proposed and experimentally demonstrated by several
groups [6-9]. They all exploit the strong interaction
between photons and atoms (real and artificial) on the
single photon level. Detection schemes for traveling pho-
tons have also been suggested [10-12], but in those
proposals the photon is absorbed by the detector and the
measurement is therefore destructive. Proposals for
detecting itinerant photons using coupled cavities have
also been suggested, but they are limited by the trade-off
between interaction strength and signal loss due to reflec-
tion [13]. Other schemes based on the interaction of A-type
atomic level structures have been suggested, but the
absence of such atomic level structures in solid-state
systems make them unsuited to the microwave regime
[14-16].

Here, we present a scheme to detect a propagating
microwave photon in an open waveguide. At its heart is
the strong effective nonlinear interaction between micro-
wave fields induced by an artificial atom to which they are
coupled. A single photon in the control field induces a
detectable displacement in the state of a probe field, which
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is initially in a coherent state. The control field is not
absorbed, making the protocol QND. The protocol may be
operated either synchronously (in which the control pho-
tons arrive within specified temporal windows) or asyn-
chronously [17].

Figure 1 illustrates the scheme. The effective nonlinear
interaction between the control photon and the probe
field is realized by N noninteracting artificial atoms (trans-
mon devices [18]) coupled to the transmission line.
Transmons are particularly attractive in light of recent work
demonstrating strong atom-field coupling in the single-
photon regime in open waveguides [19]. We treat the atoms
as anharmonic three-level ladder systems with energy
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FIG. 1 (color online). A chain of N transmons cascaded from
microwave circulators interacts with control and probe fields,
which are close to resonance with the 0-1 and 1-2 transition,
respectively. In the absence of a control photon, the chain is
transparent to the probe. A control photon with temporal profile
&(r) drives each transmon consecutively, which then displaces the
probe field, which is detected by homodyne measurement.
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eigenstates |0), |1), and |2) designed such that the control and
probe fields are close to resonance with the |0)<>|1) and
|1)<>|2) transition, respectively. In the absence of a control
photon, the system is completely transparent to the probe. A
single control photon will sequentially excite the chain of
transmons, displacing the state of the probe field [19], which
we show can be detected by homodyne measurement of
the probe.

While a single transmon in a waveguide induces a
large photon-photon nonlinearity, the induced displacement
of the probe field is nevertheless insufficient to yield a useful
detection protocol [20]. Furthermore, Kramers-Kronig rela-
tions imply that there will be substantial backreflection of
the control photon from a strongly coupled transmon, and it
was shown that this precludes cascading additional trans-
mons in an attempt to boost the probe displacement [20]. In
order to evade this issue, we propose cascading transmons
from stub waveguides attached to a chain of circulators,
shown in Fig. 1. In this geometry, the circulators suppress
backscattering [21] and the fields propagate unidirectionally
along the waveguide. Thus, multiple transmons can interact
with the control photon, which is fully transmitted to the
output.

To provide a quantitative analysis of this proposal, we
start by defining the transmon Hamiltonian (A = 1)

H = —;]0){0] + 1,[2)(2]. (1

We couple the transmons within a cascaded one-way
channel which we treat using the input-output formalism
[22-24]. The final output probe field of the chain yields
information about the state of the control field, which we
quantify through a suitably defined signal-to-noise ratio
(SNR), and through a fidelity measure, F, the probability to
infer the correct photon number in the control field.

We take two equivalent approaches to model the
photon source [20]. In the first, we invoke a fictitious source
cavity with resonance frequency @, and annihilation
operator a to generate the control photon. In the rotating
frame defined by the unitary transformation U(r) =
exp{itlw.(|0)(0| + a’a) + w,|2)(2[]}, where w,,. is the
probe/control  frequency, the dynamics of the
cascaded system, including the control photon and
backaction of the homodyne measurement, is given by the
stochastic master equation (see Supplemental Material [25])

dp = —i[Her. pldt + JIM[A]pdW (1)
+[ Dla] — fcaAm+Z< I 4+ DILY)]
- Z L01’L01 +C[ 121 ()])ﬂpdt, (2)

k=j+1

where Hop = SN | H® is the effective Hamiltonian with

the single transmon Hamiltonian given by H®) =
k k k k k

AL10)(0]® + AP 2) 2] + @, Ly + Ly). ALY =

a)(ll(‘)) — w, and A;,k) = a)g]? —w, are the detunings between

control and probe fields and the transition frequencies of
transmon k, and €, is the probe amplitude. We have

defined Dlclp = cpc" —FcTep—ipce  [26], LW —

ij

F,(»j]-(>|i> ()™, and A;; = SN 1LU), where F( ) = Fﬁ’:) are
transmon decay rates. We allow different couphngs between
each transmon and the waveguide, which we numerically
optimize to achieve high SNR. The cascaded, field-induced
interaction between the transmons in the chainis described by
the superoperator Clcy, c;]p = [c;,clp] + [pc{,cz], and
M(clp = (e®cp + e pct) — (ePc + e @cT)p is  the
measurement superoperator describing the backaction of
the homodyne measurement with local oscillator phase ¢ and
efficiency n [27]. dW(t) is a Wiener increment satisfying
E[dW(t)] =0 and E[dW(t)?] = dt. The control photon
envelope .f( ) is set by the time-dependent cavity damping
rate k(¢ )/ |€(s)|>ds]'/? [28]. Although the cavity
con51dered here is notionally fictitious and serves merely as
the photon source, we note that photon generation with
cavities with or without tunable couplings have been dem-
onstrated recently [29-31].

In the second approach, we adopt the Fock state master
equation formalism, in which the control photon envelope
appears explicitly [25,32]. In either of the approaches,
the transmon dynamics are not adiabatically eliminated,
but included explicitly (within the rotating wave
approximation). Hence, we do not rely on any effective
cross-Kerr-type Hamiltonian to mediate photon-photon
interactions [16,33].

In either numerical simulations or an actual experimental

implementation of this scheme, the stochastic output from
the homodyne measurement of the probe field is
Ja(t)dt = /(e Ny + e Ny )di + dW (1), where n is
the number of photons in the control field. The ultimate
objective is to derive a signal S, encoding the state of the
control field from the homodyne current j,. The most
straightforward approach is to average ]n over a sultably
optimized temporal window S, = f, Jn(2)dt, where t,,
t; — t; is the measurement window. In the absence of a
control photon, j, consists only of the quantum noise
associated with the probe field, and so E[Sy] = 0, and the
variance is var[Sy] =1,. In the presence of a control
photon, the probe field is displaced in phase space and
the homodyne current acquires a time-dependent compo-
nent [pictured in Fig. 2(c)], so E[S;] # 0. Thus, we define
the signal-to-noise ratio

SNR = E[S,]/\/var[S,] + t,n. 3)
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FIG. 2 (color online). Signal-to-noise ratio (SNR) and detector dynamics. (a) SNR calculated using the master equation (ME) with
Fock state input (Supplemental Material [25]) (red circles), stochastic master equation (SME) with a Fock state input (green squares),
and stochastic master equation with a tunable cavity as photon source (blue triangles). The dashed line shows a v/N fit assuming that
each transmon contributes equally and independently to the signal. Inset: Detection fidelity F of correctly inferring the control photon
number, Eq. (4). The crosses are results of Monte Carlo sampling from the stochastic master equation; the dashed line is inferred from
the SNR, assuming a normal distribution. (b) Histogram of signal with O (blue) and 1 (red) control photons. For N = 1 transmon, the
distributions overlap significantly (SNR = 0.7); for N = 8, the distributions are well resolved (SNR = 1.85). (c) Transmon excitation
P, and average homodyne current (j(z)) over time for N = 3. (d) Integrated output photon flux for N = 1, 4, and 8, showing unity
transmission. Transmon parameter values are listed in Table I, the homodyne local oscillator phase is ¢» = z/2 and probe integration
window 4 < ¢t < 8 + 1.5(N — 1), a value which is found by numerical optimization to limit the amount of added noise to the signal. All

L. . . 1 1
quantities are in units of I'v’ =17,

We note that there are more optimal ways to define the
signal S, using linear or nonlinear filters on j, [34]. We
find that optimal linear filters improve the SNR modestly
(Supplemental Material [25]), but for brevity and simplic-
ity, the results in this Letter use the simple defini-
tions above.

The mean of the homodyne current (j(7)) is given by the
unconditional dynamics of Eq. (2). Using the quantum
regression theorem, it is possible to calculate the variance
from the unconditional dynamics, and one does not, in
principle, need to solve the full stochastic evolution if
interested in the signal-to-noise ratio as written above [35].
However, since the SNR does not contain any information
about the signal distribution, a quantitative assessment of the
measurement fidelity can only be done by Monte Carlo
sampling the output of the full stochastic master equation of
Eq. (2). We define the measurement fidelity, F, to be the
probability of correctly inferring the state of the control field,

F = P(S < ST|0)P(n = 0) + P(S > ST|1)P(n = 1),
)

where P(S < SI|n) is the conditional probability that Sis less
than some predefined threshold S? given the control field has
n photons. For the purposes of this Letter, we assume the
priors P(0) = P(1) = 1/2.

Figure 2(a) is the main quantitative result of this Letter,
showing SNR as a function of the number of transmons N,
assuming a Gaussian control-photon envelope &£(7) (see
Table I). For a single transmon the SNR is around 0.7,
consistent with the results in Ref. [20]. For N = 2 trans-
mons, the SNR reaches unity and grows monotonically
with N. Figure 2(b) shows the corresponding histograms of
Soq for N=1 and N = 8. Clearly, the peaks are not
resolved for N = 1, but they are well resolved for N = 8§,
consistent with improvement in SNR. For the latter, there is
a notable skewness and increase in the width of the
distribution for the one-photon case. Although this seems
to indicate a slight memory effect, we can fit the SNR data
in Fig. 2(a) to a simple v/N dependence, which is what we
expect if each transmon contributed equally and independ-
ently to the signal. The crosses in the inset of Fig. 2(a) show
the probability of correctly inferring the input photon
number [using Eq. (4)] assuming a common threshold,
S¥ = ST. The dashed line is a theoretical fit estimated from
the SNR assuming Gaussian distributions, which slightly
overestimates the fidelity, on account of the non-Gaussian
skewness in the histograms.

If a definitive measurement result is not required, the
value of F can be improved by choosing separate thresh-
olds, S§ < ST, such that the data falling between the
thresholds are rejected as inconclusive. Our analysis shows
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TABLE L.

Parameter values for which the SNR is plotted in Figs. 2 and 3. All of the rates are in units of I";

(1). The values of other

parameters are I, I =20, AL =0, Ai, = 0. 2000 trajectories are used in the simulation for each control input state.

Photon shape E(r) r

ph

7, 0 i rd i r? rl 1Y @ g

Gaussian [FZ /(271)}1/4 exp[-T? ( T,)*/4] 08
Decaying exponential T,,—1) , /Ton exp T,ut/2) 0.5
Rising exponential t— oi)\/T pn€xp (Tput/2) 0.5

4 10 19 22
4 10 16 2.1
12 1.0 19 23

25 24 25 27 32 0.12 0.6813
25 26 29 35 3.8 0.16 0.5272
26 3.0 33 35 3.8 0.16 0.5424

that with eight transmons a value of F = 0.95 (F = 0.90)
can be reached with 15% (0%) of the measurement records
being rejected. These numbers are above or comparable to
the measurement efficiencies quoted in Refs. [10-12], and
we stress the fact that the detection schemes proposed there
were destructive.

The detector dynamics is shown in Fig. 2(c), showing the
excitation probability of each transmon as function of time
for N = 3 along with the average homodyne signal (j(z)).
As the excitation is relayed through the chain, each trans-
mon contributes to S, overwhelming the quantum noise in
the probe. The results in Fig. 2 were obtained for an
optimized set of parameter values by numerically tuning
A., Ap, I'e =Ty, and I'), =Ty, independently for each
transmon. We emphasize that this is quite robust: we can
get SNR > 1 for a wide range of parameters (Supplemental
Material [25]). Figure 2(d) shows the integrated control

photon flux (Supplemental Material [25]), which
2_
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FIG. 3 (color online). (a) SNR with different input photon
shapes. The parameters of the transmons and the probe field are
optimized for each of the pulse shapes (see Table I). The dashed
lines are fitted using ;(\/]V; the best-fit values of y are in
Table 1. (b) Effect of losses in circulators on the SNR for a
Gaussian input photon for two realistic choices of power loss
P, in each circulator. (c) Number of transmons that would be
required to achieve SNR > 1 for a Gaussian input photon for
detector efficiency 7.

asymptotes to unity, indicating that the detector is trans-
parent to the control field, making the protocol QND, albeit
with some distortion in the control photon envelope. At the
expense of a slightly diminished fidelity, ', we can choose
the transmon coupling strengths to preserve the control
photon envelope (Supplemental Material [25]). Figure 3(a)
shows the SNR for non-Gaussian control-photon enve-
lopes, &(t), which are quantitatively somewhat worse than
the Gaussian case, but not qualitatively so.

Circulators underpin the operation of this proposal. In
practice, commercial circulators suffer both insertion loss
and limited isolation. Both of these effects can be modeled
as losses appearing at the input to the circulator: insertion
loss is obvious, while imperfect isolation manifests as
backscattering or nonefficient interaction, which we treat as
a loss process (Supplemental Material [25]). We simulate
both of these imperfections by interleaving fictitious beam
splitters at the input to each circulator (Supplemental
Material [25]). Figure 3(b) shows the SNR as a function
of N for 4% and 8% power loss . Since more power is
lost with larger N, we see that the previously monotonically
increasing SNR now acquires a maximum value.
Importantly, we see that it is still possible to get
SNR > 1 with realistic numbers (5%—-10%) [36], and we
expect this to be an even smaller issue if on-chip circulators
[37] are realized.

Figure 3(c) shows the performance of the proposed
detector when the efficiency of homodyne detection is
less than 100%. Reassuringly, the overhead caused by an
inefficient detector is not too high. With current state-of-
the-art amplifiers [38], this scheme should be able to detect
photons with a moderate number of transmons. The
proposal is not impacted significantly by dephasing
(Supplemental Material [25]).

In principle, the probe beam can be left on, since the
detector is transparent to the probe when no control photons
are present. In our analysis we assume that the a priori
probability of a photon in a given temporal window is 50%.
This is consistent with applications where the possible
arrival time of the photon is known a priori. However, the
detector may be operated in an asynchronous running mode
(in which the a priori control photon probability in a given
temporal window is not 50%), where the integration
window of temporal width ¢,, slides over the entire duration
of the homodyne measurement, and photon arrivals will be
marked by a peak in this moving average.
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In conclusion, we have proposed and analyzed a micro-
wave photon detector consisting of a chain of transmon
qubits. We show that a modest number of transmons
connected by circulators is enough to achieve SNR > 1
and a measurement fidelity > 90%. We anticipate that
analogous protocols could be used to detect other itinerant
bosonic particles, e.g., phonons [39], and, together with
postselection, be used for probabilistic generation of non-
classical states of the bosonic field.
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