400 research outputs found

    What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium?

    Get PDF
    Microalbuminuria is an important risk factor for cardiovascular disease and progressive renal impairment. This holds true in the general population and particularly in those with diabetes, in whom it is common and marks out those likely to develop macrovascular disease and progressive renal impairment. Understanding the pathophysiological mechanisms through which microalbuminuria occurs holds the key to designing therapies to arrest its development and prevent these later manifestations

    Effect of endothelial cell heterogeneity on nanoparticle uptake

    Get PDF
    Endothelial cells exhibit distinct properties in morphology and functions in different organs that can be exploited for nanomedicine targeting. In this work, endothelial cells from different organs, i.e. brain, lung, liver, and kidney, were exposed to plain, carboxylated, and amino-modified silica. As expected, different protein coronas were formed on the different nanoparticle types and these changed when foetal bovine serum (FBS) or human serum were used. Uptake efficiencies differed strongly in the different endothelia, confirming that the cells retained some of their organ-specific differences. However, all endothelia showed higher uptake for the amino modified silica in FBS, but, interestingly, this changed to the carboxylated silica when human serum was used, confirming that differences in the protein corona affect uptake preferences by cells. Thus, uptake rates of fluid phase markers and transferrin were determined in liver and brain endothelium to compare their endocytic activity. Overall, our results showed that endothelial cells of different organs have very different nanoparticle uptake efficiency, likely due to differences in receptor expression, affinity, and activity. A thorough characterization of phenotypic differences in the endothelia lining different organs is key to the development of targeted nanomedicine

    Understanding Analysts Forecasts

    Get PDF
    The purpose of this paper is to model analysts ’ forecasts. The paper differs from the previous research in that we do not focus on how accurate these predictions may be. Accuracy may indeed be an important quality but we argue instead that another equally important aspect of the analysts ’ job is to predict and describe the impact of jump events. In effect, the analysts ’ role is one of scenario prediction. Using a Bayesian-inspired generalised method of moments estimation procedure, we use this notion of scenario prediction combined with the structure of the Morgan Stanley analysts’ forecasting database to model normal (base), optimistic (bull) and pessimistic (bear) forecas

    Observation of anomalous Meissner screening in Cu/Nb and Cu/Nb/Co thin films

    Get PDF
    We have observed the spatial distribution of magnetic flux in Nb, Cu/Nb and Cu/Nb/Co thin films using muon-spin rotation. In an isolated 50 nm thick Nb film we find a weak flux expulsion (Meissner effect) which becomes significantly enhanced when adding an adjacent 40 nm layer of Cu. The added Cu layer exhibits a Meissner effect (due to induced superconducting pairs) and is at least as effective as the Nb to expel flux. These results are confirmed by theoretical calculations using the quasiclassical Green’s function formalism. An unexpected further significant enhancement of the flux expulsion is observed when adding a thin (2.4 nm) ferromagnetic Co layer to the bottom side of the Nb. This observed cooperation between superconductivity and ferromagnetism, by an unknown mechanism, forms a key ingredient for developing superconducting spintronics

    Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    Get PDF
    FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10096-016-2820-8) contains supplementary material, which is available to authorized users

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    Manifestation of the electromagnetic proximity effect in superconductor-ferromagnet thin film structures

    Get PDF
    Using the newly emerged theory model of an electromagnetic proximity effect, we demonstrate that it provides a good description of our previously reported anomalous Meissner screening observed in thin film superconductor-ferromagnet proximity structures. Using the low energy muon spin rotation measurement technique, we further investigate this new theory by probing directly the flux screening in various superconductor-ferromagnet proximity structures. We examine its main characteristics and find in general good agreement between theory and experiment. Understanding and control of this new proximity effect is an important step forward toward a new generation of superconducting spintronic devices

    Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of essential oils for controlling <it>Candida albicans </it>growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against <it>Candida albicans </it>in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil.</p> <p>Methods</p> <p>Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of <it>C. albicans </it>cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated <it>C. albicans </it>cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS.</p> <p>Results</p> <p>Lemon grass (<it>Cymbopogon citratus</it>) essential oil exhibited the strongest antifungal effect followed by mentha (<it>Mentha piperita</it>) and eucalyptus (<it>Eucalyptus globulus</it>) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of <it>C. albicans </it>cells. SEM/AFM of <it>C. albicans </it>cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%).</p> <p>Conclusion</p> <p>Lemon grass essential oil is highly effective in vapour phase against <it>C. albicans</it>, leading to deleterious morphological changes in cellular structures and cell surface alterations.</p
    corecore