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Abstract 

The purpose of this paper is to model analysts’ forecasts. The paper differs from the previous research 
in that we do not focus on how accurate these predictions may be. Accuracy may indeed be an 
important quality but we argue instead that another equally important aspect of the analysts’ job is to 
predict and describe the impact of jump events. In effect, the analysts’ role is one of scenario 
prediction. Using a Bayesian-inspired generalised method of moments estimation procedure, we use 
this notion of scenario prediction combined with the structure of the Morgan Stanley analysts’ 
forecasting database to model normal (base), optimistic (bull) and pessimistic (bear) forecast 
scenarios for a set of reports from Asia (excluding Japan) for 2007–2008. Since the estimation 
procedure is unique to this paper, a rigorous derivation of the asymptotic properties of the resulting 
estimator is also provided. 

Keywords: analysts’ reports, price forecasts, scenario prediction, jump diffusions, risk management 
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1. Introduction 

Understanding the activities of financial analysts has long occupied the minds of both academics and 
practitioners alike. Nevertheless, the vast majority of this research effort has focussed on the 
predictive accuracy and efficacy of analysts’ reports. Instead, we argue in favour of an alternative 
interpretation of the role played by analysts; namely, to predict and describe the impact of jump 
events. The primary focus of this paper is, therefore, to produce a model of analysts’ forecasts for 
normal (base), optimistic (bull), and pessimistic (bear) forecast scenarios using a database of forecasts 
collected by Morgan Stanley (MS) analysts in Asia, excluding Japan, throughout 2007. Since each set 
of forecasts is accompanied by a detailed report, the database constitutes a welcome distillation of the 
often considerable amounts of information pertaining to the key drivers underlying future stock 
movements elicited by MS's analysts. 
 
As we have already mentioned, the majority of past studies relating to analyst reports have focussed 
on the recommendation aspect of the report – buy, sell, or hold – and how such recommendations 
translate into stock price changes. Although a full literary survey is beyond the scope of this paper, the 
general conclusion from this literature, rather unsurprisingly, is that a positive stock price reaction 
generally follows an upgrade and a negative price reaction follows a downgrade. Less surprising, 
however, is the evidence relating to asymmetric responses, that is, there is now mounting evidence to 
suggest that downgrades are associated with much larger market reactions than upgrades. An 
excellent survey of this literature with accompanying references is provided by Kerl and Walter 
(2008) who find that aside from recommendations, earning forecasts and target price forecasts, the 
reputation of the analysts, and the detailed textual content of the report (when reduced to an 
appropriately coded variable) also influence market reactions. The idea to use the textual content of 
the report is an interesting one and something that we build on in this paper. Specifically, we take as 
our latent jump event the textual descriptions of factors that might increase or decrease the assets 
price; such an approach is facilitated by the particular structure of the MS analyst's reports which we 
describe next. 
 
The MS database used in the empirical part of the paper contains data on the report publication date, 
the duration the report was ‘active’, and the forecasted bull, bear, and base prices. These prices 
represent forecasts by the analyst, which are conditioned on a number of events; it is helpful in what 
follows to think of these events as jump events. In some cases there are also written descriptions of 
the possible events that may lead to the occurrence of the bull or bear price. Presumably therefore, if 
none of these occurs, the base price is the relevant forecast. Thus, although we do not know whether a 
jump event – either good or bad – occurred over the course of the year for a particular stock and a 
particular analyst, it is often the case that a report that was currently ‘active’ is replaced. It is thus 
reasonable to suppose that this was the result of a jump occurring that had been observed by the 
analyst. In other cases, the active report at the start of the time period was also active at the end, 
indicating the absence of a jump event. To the extent that only some of the analysts report the 
forecasting horizon (which, when reported, is always 1 year), we take as the default forecasting 
horizon time a period of 1 year. Consequently, although the database has both temporal and cross-
sectional dimensions, the fact that the majority of the reports are overlapping and the maximum time 
difference between report issues is only 12 months motivates our decision to treat all forecasted prices 
as realisations from an underlying time-homogeneous process when conducting the empirical 
analysis; ergo, we will proceed with the estimation under the assumption that the data only have a 
cross-sectional dimension. 
 
In order to maintain internal consistency between the reporting and prediction methods used by MS 
analysts, Weyns, Perez, and Jenkins (2007) emphasise a number of key principles on which the 
forecasting database is built. Chief among them is the idea that analysts should think probabilistically 
about the ranges of uncertainty related to underlying jump events; the authors believe that single-point 
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estimates only obscure valuable insights and give a false impression of precision. Moreover, rather 
than trying to communicate views on all of the key drivers and possible scenarios that may occur over 
the forthcoming year, analysts , 5are encouraged to seek transparency and avoid unnecessary 
complexity by only forming probabilistic views over a manageable number of scenarios; ‘In most 
cases, we have found that three scenarios are plenty’ (Weyns, Perez, and Jenkins 2007, 5).1 Thus, the 
fact that analysts already think in terms of probabilistic statements over small number of events 
provides suitable justification for both the parametric jump-diffusion approach (Section 2), and our 
method of Bayesian-inspired generalised method of moments (GMM) explained (Section 4) which 
was developed specifically for the purpose of restricting analysts’ prior beliefs to small number of 
discrete jump events. 
 
However, before we explain the details of our empirical methodology, it is useful to illustrate the level 
of textual detail captured by the MS analysts’ forecasting database. The following is a short extract 
from a randomly selected recent MS report on China Infrastructure Machinery Holdings (2007),  
 

‘Risk to Our Price Target: Downside risks to our price target include higher-than-expected 
steel prices, a significant FAI slowdown and tougher industry competition. Upside risks 
include strategic alliances with global names, M&A opportunities, faster-than-expected 
volume growth and lower-than-expected steel prices. The company announced on 16 January 
2007 that it was in preliminary discussions with an independent third part on a proposal, 
which may lead to an offer for part of the listed securities of the company. We believe CIMH 
is likely to pursue M&A opportunities to further consolidate the market.’ (China 

Infrastructure Machinery Holdings, 12 February 2007, 10). 
 
Even from this short extract, the analyst's role in identifying circumstances that might lead to a 
dramatic improvement or fall in the stock price is immediately apparent; and this is, indeed, the case 
for the remaining reports in the database. It seems reasonable, therefore, to make the assumption in 
what follows that the analyst is an informed agent about the magnitude and number of jumps and 
reporting these constitutes an important part of her job. 

2. The jump-diffusion model 

In order to model the ‘scenario’ nature of the price forecasts, we now present a technical development 
of Lévy processes which are especially well suited to capture jump events in asset returns (Cont and 
Tankov 2004; Tankov 2007). At their most basic level, all Lévy processes can be decomposed into 
four components: a drift term, a diffusive part which is based on Brownian motion, a ‘large jumps’ 
component in the form of a compound Poisson process, and a ‘small jumps’ component in the form of 
a pure jump martingale. As we have already outlined above, however, it is infeasible for analysts to 
consider small jumps and they are constrained to predict only a finite number of jumps in any time 
period. Such constraints naturally shrink the class of Lévy pure jump processes that could underlie the 
analysts’ predictions. In fact, it is well known that there is only one Lévy pure jump process that 
exhibits a finite number of jumps in a finite time interval: the compound Poisson process – all other 
pure jump processes exhibit an infinite number of small jumps in any finite time interval (Applebaum 
2004). 
 
Accordingly, we choose to model the latent prediction process by combining a drifting Brownian 
motion with two independent compound Poisson processes in order to capture the three essential 
elements of scenario prediction: namely, the base, bull, and bear price. It is, therefore, implicitly 

                                                           
1
 See Bunn and Salo (1993) for an early elucidation of the benefits to be gained from scenario 

prediction over forecasting, and the early popularity of scenario-based approaches to prediction within 
various business organisations. 
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assumed in what follows that the base process follows a geometric drifting Brownian motion that 
constitutes the prediction in the absence of jumps, while the bull and bear processes correspond to the 
addition of the relevant jump component to this base process. Formally, the prediction of the asset 

price at time t is given by , where the Lévy process describing the log-return prediction, X 

t , has the double-jump-diffusive specification in the spirit of Merton (1976), 
 
 

 
 

where W t is a standard Brownian motion, denotes a Càdlàg Poisson process with 

stationary independent increments and intensity λ i , and the log-jump size is a Gaussian random 

variable with mean α i and variance for .2 The solution to this stochastic 
differential equation is given by  
 

 
 
which implies that log-returns are independent and identically distributed – a consequence of the 
assumed independence of the Brownian and jump components. 
 

Conditioning on the event of bull jumps and bear jumps, it follows that 

there must have been exactly n Bull and n Bear times, say τ l , , and τ m , 

, between t and t+τ such that and , respectively. Thus, the 
jump component in Equation (2) can be written as  
 

 
 

which is the sum of n Bull and n Bear independent jump terms with distributions and 

, respectively. Hence, the transition density of X t+τ given X t is given by  
 

 
 
where  
 

 

                                                           
2
 For computational simplicity, it is further assumed that Wt , Jt , and Yt are independent.  
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for . The functional form of the transition density will play a crucial role in 
delineating the risk management implications of our findings. However, before this can be 
accomplished, it remains to describe our method of Bayesian-inspired GMM estimation (Section 4) – 
a crucial prerequisite of which is the moments of the log-return predictions described by Equation (2). 
We conclude this section by illustrating the method by which they can be derived. 
 
Although the law of the log-return prediction between time t and t+τ does not admit a closed form 
expression, the Lévy-Khintchine theorem can be applied to obtain the following analytical expression 
for the characteristic function of the jump-diffusion process followed by z τ,  
 

 
 
It, therefore, follows that the raw moments of z τ can be calculated according to  

 
 

for , where denotes the jth-order derivative of s with respect to x. The first 
three moments are thus given by  
 

 
 
Expressions for the remaining central moments used in the empirical section of this paper are 
described in the Appendix.3 

 

3. Identification issues 

Before outlining our method for estimating the parameters of the double-jump-diffusion process, we 
first consider the issue of weak identification which motivates our Bayesian-inspired GMM approach 
to estimation. Although each parameter is separately identified within our model, it can nevertheless 
be the case that several combinations of the parameters correspond to approximately the same jump-
diffusion process. The result is that the parameters are often imprecisely estimated. This issue was 
first discussed by Aït-Sahalia (2004) in the context of disentangling the jump component from the 
Brownian component when estimating these types of Lévy processes. In particular, he showed that as 
the sampling frequency tends towards infinity, even infinite activity jump and Brownian components 
can be perfectly disentangled. In the present context, however, the low-frequency nature of analysts’ 

                                                           
3
 See Press (1967) for an early derivation of these moments using the transition density function in the 

case of one compound Poisson process.  
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reports means that we cannot appeal to these asymptotic results and so the issue of weak identification 
remains. 
 
To illustrate why this problem arises, we consider a simple moment-matching example analogous to 
that presented in Aït-Sahalia (2004) and which is designed to show that different combinations of the 
parameters can satisfy the same moment conditions. For instance, Figure 1 plots the combinations of 
jump intensity and mean jump size that result in the same observable conditional variance of log-

returns, , with all other parameters held fixed. Intuitively, any two 
combinations of parameters on the same curve cannot be distinguished by the method of moments 
using that moment condition. Thus, we see that there is a clear trade-off between concluding that there 
are a high frequency of small jumps and a low frequency of large jumps. 
 

Figure 1. Trade-off between jump frequency (λ) and mean jump size (α). 
 

 
 
 
 
The overwhelming conclusion from this simple example is, therefore, that one must exploit a range of 
moments in order to identify the parameters.4 However, the fact remains that with a finite sample 
there can still be several combinations of the model parameters that correspond to approximately the 
same jump-diffusion process. In other words, large changes in the parameter values can result in small 
changes in the moment function, thereby rending the parameter estimates highly imprecise. In this 
situation, one would like to improve the precision of the estimates by fixing one of the parameters; but 
which parameter should we fix? And at what value should it be assigned? 
 
Our proposed answer to these questions derives from empirical Bayesianism. Given the richness of 
our data set and the constraints on analysts’ reporting behaviour, we believe that we have enough 
prior information at our disposal to facilitate the separate estimation of the prior distribution of the 
jump frequency parameter. Thus, by estimating the hyper-parameters of this prior distribution we are 
effectively assigning fixed values to the jump frequency parameter, which in turn provides the 

                                                           
4
 In fact, Carrasco et al. (2007) propose a GMM estimator that uses a continuum of moment 

conditions implied by the characteristic function.  
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additional numerical stability that we desire. To illustrate this idea in more detail, we make a 
temporary detour from our GMM setting and consider the use of maximum likelihood in the presence 
of complete non-identification – a much stronger problem than we are faced with. 
 

Let denote a set of N draws from a Gaussian distribution with unknown mean, µ1+µ2, and 
known variance, σ2. It is obvious that µ1 and µ2 are not separately identified and so conventional 
maximum likelihood techniques are not directly applicable. However, placing a suitable prior 
distribution on µ2 allows us to identify µ1. To see how this can be achieved, we first of all note that the 
joint density of µ1 and µ2 can be written as  
 

 
 

where we assume that with the hyper-parameters, µ˜2 

and , known, , and . The existence of such a prior distribution 
implies that, given an infinite amount of data, the distribution of our prior beliefs converge to a 
degenerate distribution centred on the true value of the parameter.5  
 
Conditional on the existence of this prior distribution, our ultimate objective is to identify µ1, which is 
equivalent to finding  

 
 
Substituting the functional form of the likelihood and prior density, we obtain  

 
 

where . Furthermore, by completing the square we arrive at the following 
expression  
 

 
 
where  

                                                           

5
 From our empirical Bayesian perspective where the hyper-parameters are estimated from 

observed data, it is likely that we will become more confident in the prior belief the more data 
we have at our disposal and so the assumption that a prior distribution exists with these 
properties is not overly optimistic.  
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Hence, defining, , it follows that   and thus,  

 
 
which is clearly a Gaussian kernel, and so  
 

 
 
Hence, through our prior knowledge of the distribution of µ2 we can identify µ1. 
Although this example is highly stylised and its conclusions are too strong for present purposes, it 
nevertheless conveys the important idea that through the appropriate use of a prior distribution one 
can circumvent the problems associated with unidentified or weakly identified parameters. However, 
it also serves to illustrate the importance of selecting an appropriate prior distribution: if, for instance, 

the hyper-parameters were ‘inaccurately’ chosen, e.g. , then the distribution 
of µ1 would not be centred correctly and so the estimator would be inconsistent. Since the choice of 
prior distribution is critical to our analysis, Section 5 will discuss this issue in greater detail. 
 

4. GMM estimation 

To motivate the choice of GMM estimation, we note that the class of exponential Lévy processes 
implies that asset prices derive from a mixture of N Gaussian distributions, where N goes to infinity. 
In these cases, results from the mixture-of-distributions literature show that the likelihood function 
can become unbounded and thus maximum likelihood estimation is infeasible (Kiefer 1978; Honoré 
1998). To remedy this, Honoré (1998) suggests a concentrated maximum likelihood estimator which 
restricts the volatility parameters in the jump diffusion to be in a compact set which includes the true 
values. Specifically, he proposes a re-parametrised model whereby the baseline volatility parameter 

and jump volatility parameter are linked via , where m is a positive constant that fixes the 
relative sizes of the volatilities. The estimation methodology proceeds by fixing m and calculating the 
maximised likelihood; a procedure which is repeated for many values of m M. The parameter 
estimates are those corresponding to the m* that maximises the profile likelihoods. 
 
In spite of the elegance of this approach, the profile likelihood is not a true likelihood as it is not based 
directly on a probability distribution and this can lead to some unsatisfactory properties, including a 
loss of efficiency.6 In contrast, we have seen that the characteristic function is available in analytical 
form and so GMM methods can be utilised. Moreover, the asymptotic properties of this estimator are 
rigorously proved in the Appendix and so, although we lose some efficiency when compared with the 

                                                           
6
 Attempts have been made to improve this, resulting in the modified profile likelihood (Barndorff-

Nielsen 1988). 



  

UNDERSTANDING ANALYST FORECASTS 9 

 

full information maximum likelihood, we prefer this methodology to the profile likelihood approach 
of Honoré (1998). In spite of this preference, however, there nevertheless remain obvious parallels 
between both methods arising from the fact that both ‘fix’ a parameter value in order to improve the 
stability of parameter estimation. 
 
To illustrate the methodology underlying the Bayesian-inspired GMM procedure, we first of all note 
that our assumptions about the data set imply that our data are essentially base, bull, and bear 
realisations from the underlying time-homogeneous stochastic process given by Equation (1). 

Accordingly, we let denote the concatenation of a single realisation of this 

log-return prediction data, and let h(θ, Z) denote the vector-valued function with the typical 

element  for and , 
where the expectation is with respect to the distribution of z, and 1[j>1] is an indicator function taking 
value of unity if j >1 and zero otherwise.7  
 
Note that the relevant moment conditions for the base, bull, and bear predictions, M i [j, τ], will 
correspond to the coefficient restrictions , , and in Equations 

(A2)–(A7). In all of the other cases we let the supports of the two jump intensity parameters, 
and , be the set of integers between zero and four (inclusive). Our decision to restrict the 
supports of these parameters is a consequence of the nature of the reporting process and the textual 
content of the analyst reports themselves – a supposition which is confirmed by the empirical 
evidence contained in Tables 1–3. Thus, in order to incorporate these constraints on prior beliefs into 

the methodology, we introduce a series of prior probabilities with 

which attach weights to each of the combinations of over which the 
analyst might have beliefs over. Hence, letting θ0 denote the true value of  

 
we can utilise the orthogonality conditions implied by  
 

 
 
to estimate θ0, where, once again, the expectation is with respect to the distribution of z. 
 
 
Table 1. Total re-issues. 

                                                           

7
 For notational convenience, we suppress the time subscript of the log-return, i.e. . 
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Table 2. Bull re-issues. 
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Table 3. Bear re-issues. 

 
 
To the extent that this Bayesian-inspired GMM approach is a novel addition to the existing GMM 
literature, we now provide a detailed explanation of the two-step estimation algorithm and the 
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necessary mathematical justifications for the consistency and asymptotic normality of the estimator. 

Letting denote N realisations from the log-return prediction 
process and letting g(θ, z) denote the vector of orthogonality conditions weighted by the prior 

probabilities, i.e. , we can define the sample orthogonality conditions 
as  
 

 
where the expectation is now with respect to the empirical distribution function. Hence, an estimator 
of θ0 can thus be obtained by minimising the modified GMM criterion function  
 

 
 

where WN is an appropriately defined positive semi-definite weighting matrix with and W 

positive definite, and . More specifically, we use the standard two-step GMM 
algorithm based on the following procedure.  
 

 1. Maximise Q N (θ) using , and obtain , 

 

2. Calculate , 

 3. Maximise Q N (θ) using and obtain ˆ θ. 

 
Under the following regularity conditions, we can show that this Bayesian-inspired two-step GMM 
estimator is consistent and asymptotically normal. 

Assumption 1 

(a) is the unique solution to , (b) Θ is compact, (c) g(θ, z) is continuous at 

each with probability 1, (d) (e) is 

positive definite. 

Assumption 2 

(a) (b) g(θ, z) is continuously differentiable on a neighbourhood of 

(c) is full column rank. 

Theorem (consistency) Under Assumption 1, . 

Proof  See Appendix Section A2.    

Theorem (asymptotic normality) Under Assumptions 1 and 2, it follows that  

 
 
where  
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Proof  See Appendix Section A2.    

Although the algorithm could be iterated, the estimates based on a single iteration have the same 
asymptotic distribution as those based on an arbitrarily large number of iterations (Newey and 
McFadden 1994). 
 

5. Informative priors 

To operationalise our Bayesian-inspired GMM approach, it remains to define the method of setting 

the prior probabilities which attach weights to each of the combinations of bull and 

bear jumps, , for each of the groups under consideration. To do so, we 
adopt an empirical Bayesian stance whereby the probabilities are partly based on the known number 
of re-issues and partly based on the report statements such as the one provided in Section 1 that lists 
up to four specific events.8  
 
Formally, we estimate the intensity hyper-parameter λ from a Poisson distribution for the total number 
of re-issue frequencies, x, for each group in the data set using the data contained in Table 1. From 
these estimates we then calculate the probabilities associated with the total number of re-issues, x, 
using the Poisson density  
 

 
 
which implies that  

 
 
and so forth. Thus, under the assumption that the numbers of re-issues due to bull and bear events are 
independent, the prior probabilities for j bull and k bear jumps can be calculated according to  

 
for . 
An alternative approach would be to estimate different intensity hyper-parameters for the bull and 
bear distributions using the information contained in Tables 2 and 3 rather than assuming a common 
intensity hyper-parameter, ˆ λ, for both. We choose not to pursue this approach for the simple reason 

                                                           
8
 See Weyns, Perez, and Jenkins (2007) for further evidence on the reporting process and suggested 

constraints on the number of jump events reported. 



  

UNDERSTANDING ANALYST FORECASTS 14 

 

that there are a significant number of zeros in the data set corresponding to no report re-issue, and thus 
it is not possible to fit a Poisson distribution to both bull and bear intensity parameters separately 
without making some arbitrary assumptions about how to deal with the zeros beforehand. One method 
of circumventing this problem would be to fit a zero-truncated Poisson distribution to the bull and 
bear re-issue data. Unfortunately, however, this leads to the added complication that for some groups 
the maximum number of report re-issues per firm is 1 and so fitting a zero-truncated Poisson 
distribution to the data is not possible. Furthermore, the number of re-issue observations is small for 
some groups, meaning that estimation of the intensity parameter is likely to be imprecise and highly 
sensitive to outliers.9  
  

6. Results 

Due to data limitations arising from the fact that there are 102 analysts and we only have 
approximately 13 reports per analyst in the data set, we prefer to assume a collective analyst whose 
forecasts represent the forecast of all the analysts within the particular group (i.e. country or sector). 
Thus, we are implicitly assuming that the data constitute multiple realisations from the relevant 
underlying base, bull, or base stochastic process for the particular group under consideration. It is 
possible to weaken this assumption by taking into account different base models for individual stocks 
and identifying the common jumps with respect to the particular stock returns. However, this requires 
that we make some arbitrary decisions about what part of individual stock return represents base and 
what represents jumps, and so we prefer our group-based interpretation. All results are obtained using 
Asian Open Platform 1 data from the year 2007, which yields a total of 1355 cross-sectional 
observations of which 760 are uncensored; the remaining 595 observations contain no ‘report expiry’ 
information, i.e. they are still ‘active’ at the end of the sample period. 
 
In view of the fact that the well-known J-test of over-identifying restrictions over-rejects in small 
samples (see Hall and Horowitz (1996) and Hall (2000) for a discussion), we propose an alternative 
method of selecting the appropriate number of moment conditions based on $K$-fold cross-
validation.10 This approach is based on a comparison of the out-of-sample prediction abilities of the 
jump-diffusion specification estimated using different moment conditions: the final choice of moment 
conditions being the set that has the best predictive ability. Intuitively, the fewer the moment 
conditions that are required, the more Gaussian are the data and thus the less information and the 
more noise are added by employing more moment conditions. 
 

To implement this procedure, we let denote an indexing function 
that indicates to which of the K≤N partitions observation n is allocated by randomisation, and let 

denote the simulated log-return between t and t+τ for with the kth part 
of the data removed. The cross-validation process is then repeated K−1 times, with each of the k 
subsamples used exactly once as the validation data. The quadratic loss cross-validation estimate of 
the prediction error is then calculated according to  

 
 

where . Since we have 18 moment conditions in total (i.e. three moment 
conditions for each of the six moments), we use the 10-fold cross-validation prediction error to select 

                                                           
9
 Results for the groups whose maximum number of report re-issues is greater than 1 are available 

from the authors upon request 
10

 See Hastie, Tibshirani, and Friedman (2001) for a general overview of cross-validation.  
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the appropriate number of moments to use. In particular, we define a tuning parameter, 

, which indexes the number of moment conditions that are used: corresponding to 
the use of the first 5+m elements of the vector g(θ, z) defined in Section 4. That is, we calculate for 

each ,  

 
 

where  is the simulated log-return between t and t+τ for  with the 

kth part of the data removed and using the first 5+m elements of the vector  as moment 
conditions. The function CV(m) provides an estimate of the test error curve for each point m, and so 
we select the tuning parameter, i.e. the optimum number of moments, 5+m, at which the curve attains 
its minimum. The final chosen number of moment conditions is then fit to all of the data. 
 
Under our simplifying assumption of a single sector/country analyst, the estimates from the 11 sectors 
and eight countries in the data set are reported in Tables 4 and 5, respectively, using the two-step 
GMM algorithm outlined in Section 4 and the method of forming a prior density for the intensity 
parameters outlined in Section 5. 
 
Table 4. Sector Results 
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Table 5. Country results 

 
 
In light of these results, it is re-assuring to see that the parameter estimates conform to the predictions 
of the well-established financial theory. For instance, there is a clear risk of return trade-off implied 
by the parameters – the correlation between the mean and standard deviation across the sector and 

country results is 0.67 and 0.75, respectively. Moreover, the tendency for directly 
supports the ‘leverage hypothesis’ of Black (1976), which implies that stock volatility tends to rise 
more following a negative shock than a positive shock. As explained by Black (1976), leverage can 
induce future stock volatility to vary inversely with the stock price: a fall in a firm's stock value 
relative to the market value of its debt causes a rise in its debt–equity ratio and increases its stock 
volatility. The fact that these predictions adhere to existing financial theory is re-assuring and supports 
our belief that the analysts are informed agents who are producing meaningful predictions rather than 
making random guesses at the likelihood of future events. 
 
Another feature of the results is the remarkable symmetry between bull and bear components at both 
the country and sector level. In fact, when one takes into consideration the sizeable number of cases 

where we cannot reject the hypothesis that or , there is strong evidence to suggest 
that the analysts primarily choose to convey the differing nature of ‘large’ jumps via the use of 
different probability values rather than through different volatilities of the jump components. 
Although we cannot assess the epoch dependency of this conclusion, it does conform to the guidelines 
outlined in the technical report by Weyns, Perez, and Jenkins (2007) who suggest that analysts should 
adopt this exact procedure. Our results, therefore, imply that the analysts have heeded this advice, at 
least over the period under consideration. 
 
Finally, we conclude with some insights into the properties of particular sectors/countries from the 
perspectives of the analysts afforded by our modelling framework. Beginning with the sector results, 
we see that with the exception of Property, the analysts universally believe that all of the return 
distributions are positively skewed over the forecasting period. Correspondingly, we also estimate that 
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in each case and so it appears that the analysts believe that positive jumps will be on 
average greater in magnitude than negative jumps over the forecasting horizon at the sector level. In 
contrast, the bull and bear jump estimates from the country level exhibit much more symmetry with 
the exception of Taiwan and Asean – arguably two of the most heterogeneous regions in Asia. 
Another interesting point of comparison of these results pertains to their implied portfolio 
recommendations. Under the assumption of a common risk-free rate across Asia ex-Japan, we find 
that the Sharpe ratios vary dramatically between the sectors and countries (Sharpe 1966) Asean and 
Taiwan, for instance, have the highest Sharpe ratios, whereas Australia and Property have the lowest. 
Thus, since these models were calibrated using forward-looking data, these statistics are arguably 
more useful for portfolio managers than forecasted statistics based on backward-looking historical 
data. 
 
Further insights into the various sectors/countries as perceived at the analyst level can be gained by 
calculating the various transition densities implied by the parameter estimates using a truncated 
version of Equation (4); four examples of these transition densities are provided in Figure 2.11 The 
remarkable conclusion from these diagrams is that the obvious presence of a bull and bear jump 
component in the parameter estimates does not necessarily translate into a multimodal transition 
density. The starkest illustration of this is the unimodal Property transition density, Figure 2b, which 
implies that the majority of the jumps are completely off-setting. What is more, even when the 
parameter estimates convey that both bull and bear jumps are prevalent, the left and right tails of the 
density can display markedly different characteristics. Consider, for instance, the case of Transport, 
Figure 2c, which exhibits significant discontinuous mass at various spikes in the left tail, whereas the 
right tail displays continuous, albeit slow, decay. These finding have obvious risk management 
implications since the analysts are essentially predicting different amounts of mass in the left tail of 
the predictive density. This will be further explored in the following section. 
 
 
  

                                                           
11

 Although each of the remaining 15 densities is subtly different from those described in the figure, 

they nevertheless broadly adhere to one of the four shapes described in the figure.  
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Figure 2. Transition density examples. 

 
 
 

7. Risk management implications 

In the preceding section we saw how the database of analysts’ forecasts could be used to estimate the 
parameters of the latent double-jump diffusion and the associated transition densities for the various 
sectors and countries. We also suggested how calibration of these processes could yield additional 
insights into portfolio formation beyond those afforded by backward-looking methods. Arguably, a 
more natural application of these results, however, is in the area of risk management. After all, the 
primary role of the analysts is one of jump prediction and so we believe that these findings provide a 
more reliable indication of the probability of negative extremal events when compared with 
alternative risk measurement techniques such as the popular RiskMetrics (1993) methodology, which 
is based entirely on historical data. 
 
To illustrate the risk management connotations of the results, Tables 6 and 7 provide estimates of the 
5% value-at-risk (VaR) and expected shortfall (ES) for each sector and country and the corresponding 



  

UNDERSTANDING ANALYST FORECASTS 19 

 

estimates based on a Gaussian distribution with the same mean and variance.12 Notably, there are only 
four cases in which the VaR calculated using the transition density is greater in magnitude than the 
VaR calculated using the relevant Gaussian distribution. Consequently, one can conclude that the 
analysts are predicting a distinct lack of large negative jumps over the forecasting horizon. 
Nevertheless, conditional on the return being in the lowest 5% quantile, the estimates of ES imply that 
the analysts predict much larger average losses in these circumstances than those occurring under 
Gaussianity – a consequence of the slow tail decay of the transition densities.13  
 
Table 6. Sector VaR and ES estimates. 

 
 
Table 7. Country VaR and ES estimates 

 
 
Notwithstanding the calculation of risk measures such as VaR and ES, the estimated jump-diffusion 
process can also be used to stress-test existing investment strategies. Under our assumption that the 
analysts are informed agents about the magnitude and number of jumps, stress-tests based on extreme 
realisations from the latent underlying process may constitute a more reliable test of the performance 
of an investment strategy under realistic extremal conditions. 

8. Conclusion 

The purpose of this paper has been to model analysts’ forecasts for normal (base), optimistic (bull), 
and pessimistic (bear) scenarios using a set of MS reports for Asia (excluding Japan) for 2007–2008. 
To this end we developed a modified method of GMM estimation inspired by Bayesian econometrics 
and tailored to suit the discrete nature of analysts’ prior beliefs regarding the numbers of possible 
jump events. A rigorous derivation of the asymptotic properties of this estimator was also provided. 
 
Based on the results of estimation, we uncovered evidence to suggest that analysts’ beliefs conform to 
the predictions of a number of well-established theories, including the positive correlation between 
risk and return and Black's leverage hypothesis. We also documented a number of epoch dependent 
predictions made by the analysts that indicate how this approach can be used for portfolio 
construction purposes. In particular, the analysts’ predictions imply that investments in Asean and 

                                                           
12

 See, Duffie and Pan (1996) for an introduction to VaR, and Artzner et al. (1999) for a nice 

exposition of ES.  
13

 The fact that the conclusions based on VaR and ES differ should not be surprising since the former 

does not give information on the potential size of the loss beyond a particular quantile (Artzner et al. 
1999).  
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Taiwan constitute the ‘best’ investment, both in terms of Sharpe ratio forecasts and the dominance of 
bull jumps over bear jumps. As a second application, we demonstrated how the implied transition 
densities can be used to provide an augmented measure of the VaR and ES for each of the sectors and 
countries and how, within a stress-testing framework, the calibrated double-jump process could 
provide a more reliable test of the performance of various investment strategies under extremal stock 
movements. 
 
To summarise, this paper has sought to contribute to the ongoing discussion between practitioners and 
academics in order to better understand the activities of financial analysts and to advance the 
methodological basis for the use of analysts’ predictions as an additional input into existing risk 
management and portfolio construction systems. In contrast to much of the existing literature, which 
focuses mainly on the predictive accuracy and efficacy of analysts’ reports, we hope that the clear 
benefits gained from our alternative interpretation of the role played by analysts – namely, to describe 
and predict the impact of jump events – have been brought to the fore. 
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Appendix 1 

A1.  Raw moments 

The raw moments of z τ are calculated using  

 
 

for , where z 
[j] denotes the jth-order derivative of s with respect to x. Accordingly, 

the first six central moments of z τ which form the basis for the GMM estimation procedure can be 
calculated as follows  
 

 

A2. Asymptotic properties of the two-step estimator 

Following Newey and McFadden (1994), we now prove the consistency and asymptotical normality 
of our Bayesian-inspired two-step GMM estimator. However, before beginning, we remind the reader 
of a theorem and lemma which play central roles in both proofs. 

Theorem A1 

If there is a function Q 0 (θ) such that: (i) Q 0 (θ) is uniquely minimised at ; (ii) Θ is compact; 

(iii) Q 0 (θ) is continuous; (iv) Q N (θ) converges in probability to Q 0 (θ), then . 
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Proof See Newey and McFadden (1994, 2121, Theorem 2.1).   □ 

Lemma A1 

(Uniform weak law of large numbers) If the data are iid, Θ is compact, is continuous at each 

with probability 1, and hence there is a d(z) with for all and 

, then is continuous and 

. 

Proof  See Newey and McFadden (1994, 2129, Lemma 2.4).    

Assumption A1  (a) is the unique solution to   (b) Θ is compact;  (c) 

g(θ, z) is continuous at each with probability 1; (d) (e) 

is positive definite. 

Theorem A2 Under Assumption A1, . 

Proof Evoking Theorem A1, it follows that we need to verify that for  

 
 

the following conditions hold: (i) Q(θ) is uniquely minimised at ; (ii) Θ is compact; (iii) Q(θ) 

is continuous; (iv) uniformly on . However, before we begin, we need to 

show that is positive definite where is a preliminary consistent estimate of θ0. By 
the uniform weak law of large numbers (UWLLN; Lemma 1) Ω is continuous on  and  

 
 

and thus by Assumption A1(c), (d), and (e), since,  
 

 

using the triangle inequality, followed by the UWLLN (i.e. , and 

continuity of Ω (.) (i.e. . Hence, is positive definite with probability 

approaching 1 since Ω is positive definite by Assumption A1(e). Thus, the inverse exists 
and is also positive definite with probability approaching 1. 
 
Thus, we are now ready to verify the conditions of Theorem A1 for Q(θ). Condition (i) follows from 
Assumption A1(a) and (e). Condition (ii) follows from Assumption A1(b). Condition (iii) follows 
from the UWLLN applied to g(θ, z) using Assumption A1(b), (c), and (d); that is, we have that 

and g(θ) is continuous. Thus, (iii) holds because 

is continuous. Finally, to show that (iv) holds we use the triangle 
inequality to show that  
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and the Cauchy–Schwartz inequality to show that  
 

 
 

It, therefore, follows that uniformly on from the UWLLN and Assumption 

A1(d). Hence, we have shown that conditions (i)–(iv) of Theorem A1 are satisfied and thus .   
□ 

Assumption A2 (a) (b) g(θ, z) is continuously differentiable on a neighbourhood of 

(c) is full column rank. 

Theorem A3 Under Assumptions A1 and A2, it follows that  

 

 
 

where . 

Proof Assumption A1 implies that . Thus, using Assumption A2(a) and (b), the first-order 
conditions for a minimum  

 

 
 

are satisfied with probability approaching 1, where . A Taylor 

expansion of about θ0 yields  
 

 
 
where θ* lies on the line segment joining ˆ θ and θ0. Therefore, with probability approaching 1,  
 

 
 
Using Assumption A2(b) and thus the UWLLN, we know that  

 
 

and G(θ) is continuous on . Hence, it follows that , and so, it follows from 
Slutsky's theorem that  
 

 
and  
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Moreover, since is positive definite by Assumptions A1(e) and A2(c), 

is positive definite with probability approaching 1.  
Therefore, with probability approaching 1, Equation A11 becomes  
 

 
 

Evoking the Lindeberg–Lévy central limit theorem we have that , and so, 
applying Cramer's theorem yields the result  
  

 
where  
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