5 research outputs found

    Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice

    Get PDF
    open11: Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a transmembrane scaffold protein that participates in fundamental aspects of neuronal physiology including cell survival, differentiation, and synaptic plasticity. The Kidins220 constitutive knockout line displays developmental defects in the nervous and cardiovascular systems that lead to embryonic lethality, which has so far precluded the study of this protein in the adult. Moreover, Kidins220 mRNA is tightly regulated by alternative splicing, whose impact on nervous system physiology has not yet been addressed in vivo. Here, we have asked to what extent the absence of Kidins220 splicing and the selective knockout of Kidins220 impact on adult brain homeostasis. To answer this question, we used a floxed line that expresses only the full-length, non-spliced Kidins220 mRNA, and a forebrain-specific, CaMKII-Cre driven Kidins220 conditional knockout (cKO) line. Kidins220 cKO brains are characterized by enlarged ventricles in the absence of cell death, and by deficient dendritic arborization in several cortical regions. The deletion of Kidins220 leads to behavioral changes, such as reduced anxiety-like traits linked to alterations in TrkB-BDNF signaling and sex-dependent alterations of hippocampal-dependent spatial memory. Kidins220 floxed mice present similarly enlarged brain ventricles and increased associative memory. Thus, both the absolute levels of Kidins220 expression and its splicing pattern are required for the correct brain development and related expression of behavioral phenotypes. These findings are relevant in light of the increasing evidence linking mutations in the human KIDINS220 gene to the onset of severe neurodevelopmental disorders.openAlmacellas-Barbanoj, Amanda; Albini, Martina; Satapathy, Annyesha; Jaudon, Fanny; Michetti, Caterina; Krawczun-Rygmaczewska, Alicja; Huang, Huiping; Manago, Francesca; Papaleo, Francesco; Benfenati, Fabio; Cesca, FabriziaAlmacellas-Barbanoj, Amanda; Albini, Martina; Satapathy, Annyesha; Jaudon, Fanny; Michetti, Caterina; Krawczun-Rygmaczewska, Alicja; Huang, Huiping; Manago, Francesca; Papaleo, Francesco; Benfenati, Fabio; Cesca, Fabrizi

    Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis

    Get PDF
    To report on the identification of intrathecally synthesized immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies to synapsin, a synaptic vesicle-associated protein, in a patient with limbic encephalitis

    Functional interaction between the scaffold protein Kidins220/ARMS and neuronal voltage-gated Na<sup>+</sup> channels

    Get PDF
    Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability
    corecore