72 research outputs found

    The evolution of the histone methyltransferase gene Su(var)3-9 in metazoans includes a fusion with and a re-fission from a functionally unrelated gene

    Get PDF
    BACKGROUND: In eukaryotes, histone H3 lysine 9 (H3K9) methylation is a common mechanism involved in gene silencing and the establishment of heterochromatin. The loci of the major heterochromatic H3K9 methyltransferase Su(var)3-9 and the functionally unrelated Îł subunit of the translation initiation factor eIF2 are fused in Drosophila melanogaster. Here we examined the phylogenetic distribution of this unusual gene fusion and the molecular evolution of the H3K9 HMTase Su(var)3-9. RESULTS: We show that the gene fusion had taken place in the ancestral line of winged insects and silverfishs (Dicondylia) about 400 million years ago. We cloned Su(var)3-9 genes from a collembolan and a spider where both genes ancestrally exist as independent transcription units. In contrast, we found a Su(var)3-9-specific exon inside the conserved intron position 81-1 of the eIF2Îł gene structure in species of eight different insect orders. Intriguinly, in the pea aphid Acyrthosiphon pisum, we detected only sequence remains of this Su(var)3-9 exon in the eIF2Îł intron, along with an eIF2Îł-independent Su(var)3-9 gene. This reveals an evolutionary re-fission of both genes in aphids. Su(var)3-9 chromo domains are similar to HP1 chromo domains, which points to a potential binding activity to methylated K9 of histone H3. SET domain comparisons suggest a weaker methyltransferase activity of Su(var)3-9 in comparison to other H3K9 HMTases. Astonishingly, 11 of 19 previously described, deleterious amino acid substitutions found in Drosophila Su(var)3-9 are seemingly compensable through accompanying substitutions during evolution. CONCLUSION: Examination of the Su(var)3-9 evolution revealed strong evidence for the establishment of the Su(var)3-9/eIF2Îł gene fusion in an ancestor of dicondylic insects and a re-fission of this fusion during the evolution of aphids. Our comparison of 65 selected chromo domains and 93 selected SET domains from Su(var)3-9 and related proteins offers functional predictions concerning both domains in Su(var)3-9 proteins

    Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA)

    Get PDF
    The International Agency for Research on Cancer (IARC) Monographs Programme identifies chemicals, drugs, mixtures, occupational exposures, lifestyles and personal habits, and physical and biological agents that cause cancer in humans and has evaluated about 1000 agents since 1971. Monographs are written by ad hoc Working Groups (WGs) of international scientific experts over a period of about 12 months ending in an eight-day meeting. The WG evaluates all of the publicly available scientific information on each substance and, through a transparent and rigorous process,1 decides on the degree to which the scientific evidence supports that substance's potential to cause or not cause cancer in humans. For Monograph 112,2 17 expert scientists evaluated the carcinogenic hazard for four insecticides and the herbicide glyphosate.3 The WG concluded that the data for glyphosate meet the criteria for classification as a probable human carcinogen. The European Food Safety Authority (EFSA) is the primary agency of the European Union for risk assessments regarding food safety. In October 2015, EFSA reported4 on their evaluation of the Renewal Assessment Report5 (RAR) for glyphosate that was prepared by the Rapporteur Member State, the German Federal Institute for Risk Assessment (BfR). EFSA concluded that ?glyphosate is unlikely to pose a carcinogenic hazard to humans and the evidence does not support classification with regard to its carcinogenic potential?. Addendum 1 (the BfR Addendum) of the RAR5 discusses the scientific rationale for differing from the IARC WG conclusion. Serious flaws in the scientific evaluation in the RAR incorrectly characterise the potential for a carcinogenic hazard from exposure to glyphosate. Since the RAR is the basis for the European Food Safety Agency (EFSA) conclusion,4 it is critical that these shortcomings are corrected

    A non-enzymatic function of 17 beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival

    Get PDF
    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10(-/-) mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required

    Structural and functional studies of Balbiani rings in Chironomus tentans

    Get PDF
    Untersuchungen zur Struktur und Funktion der Balbianiringe von Chironomus tentans 1. Ein Verfahren wurde entwickelt, polytĂ€ne, somatische Interphase-Chromosomen aus larvalen SpeicheldrĂŒsen von Chironomus spec. als Ganze nativ zu isolieren. Isolierte und in SpeicheldrĂŒsen befindliche Riesenchromosomen wurden strukturell sowie funktionell untersucht und gegenĂŒbergestellt. 2. Die charakteristische Musterausbildung in situ und in vitro befindlicher Riesenchromosomen beruht auf der aperiodischen Abfolge 0.1-0.6 ”m dicker Banden. 0.2-0.3 ”m dicke Banden kommen in Messungen Glutaraldehyd-fixierter Chromosomen am hĂ€ufigsten vor. Die Hypothese, daß das bandenspezifische Chromomer als kleinste Struktureinheit polytĂ€ner Chromosomen durch die differentielle KnĂ€uelung der Chromatide entsteht, wurde elektronenoptisch bestĂ€tigt. In den 0.05-0.3 ”m dicken Interbanden sind die Chromatiden anscheinend frei von jeglichem Paarungskontakt. Sie zeigen keine erkennbare KnĂ€uelung. Der Chromatidendurchmesser (110-130 A) Ă€ndert sich beim Übergang von den Banden in die Interbanden-Regionen nicht. Unterschiede in der Packungsdichte der Chromatiden kommen vor. 3. In SpreitungsprĂ€paraten nativ isolierter Chromosomen findet man in den Banden Schleifen unterschiedlichen Entfaltungsgrades. Sie stellen keine Transkripte dar. Diese Konfigurationen sind Übergangsformen zwischen eng gefalteten Chromomeren-Fibrillen und den in Balbianiringen und anderen Puffs beobachteten Chromomeren-Schleifen. Im Chromatidenverlauf kommen diese 0.8-8.4 ”m langen Chromomeren-Schleifen in AbstĂ€nden von 0.6-3 ”m vor. Ihr DNA-Gehalt errechnet sich auf 7.2-75 Kilobasen (KB). Im hypotonischen Milieu geht die StabilitĂ€t und Faltung der Chromomeren-Schleifen in den Banden polytĂ€ner Chromosomen verloren. Vermutlich durch den Verlust von Histon H1. Als ein Nicht-Histon ist RNA-Polymerase B (II) [B (II)-Polymerase] mit der Chromatide assoziiert. 4. In vivo fixierte Chromosomen zeigen in Banden, Interbanden, Puffs und Nukleolen 110-130 A dicke Elementarfibrillen. DemgegenĂŒber erscheinen die gespreiteten Chromosomenfasern bis zu 300 A dick und zeigen eine deutliche Nukleosomenstruktur. In UltradĂŒnnschnitten von in situ fixierten Chromosomen sind unter physiologischen Salzbedingungen keine Nukleosomen sichtbar. 5. Balbianiringe (BR1, BR2, BR6) reprĂ€sentieren wahrscheinlich, wie andere Puffs, solitĂ€re Transkriptionseinheiten. Sie unterscheiden sich von ribosomalen Cistrons durch grĂ¶ĂŸere LĂ€nge (3-6 ”m) und die spĂ€rlichere Polymerasenbesetzung. BR1, 2, 6 besitzen 300-500 A große RNP-Grana als Transkriptionsprodukte. BR3 unterscheidet sich von allen bekannten Balbianiringen durch kleinere, 130-200 A messende RNP-Grana. BR3 ist ein Sonderfall. Das Molekulargewicht der BR2-RNA liegt schĂ€tzungsweise im GrĂ¶ĂŸenbereich von 6-10x10 hoch 6 Daltons. Grundlegende Ergebnisse dieser elektronenmikroskopischen Transkriptionsanalyse des BR2-Gens zeigt Abbildung 40. 6. Mit DIMETHYLSULFOXID kann das BR2, 1, 3-Puffing in lebenden Chironomus-Larven spezifisch verĂ€ndert werden. BR3 entwickelt sich wĂ€hrend der 2.-3. Stunde vorĂŒbergehend zum grĂ¶ĂŸten BR (overshooting). BR2 und BR1 kollabieren wĂ€hrenddessen. Von der 4. Stunde an sind das extreme Puffing (overshooting) von BR1 und BR2 und das „normale“ Puffing von BR3 typisch. Nach dem DMSO-Entzug kollabieren vorĂŒbergehend alle BR. BR3 beginnt in der Erholungsphase immer zuerst, BR2 immer zuletzt mit dem Puffing. Zwischen den drei Balbianiringen besteht eine AktivitĂ€tsbeziehung., Mit der DMSO-Stimulation des BR3 nimmt die Anzahl seiner Transkriptionsprodukte zu. 7. Chromosomen IV in DMSO-behandelten Larven zeigen ĂŒber kollabierten Balbianiringen keine 3H-Uridinmarkierung. Auch in experimentell ĂŒberkondensierten IS-Chromosomen sind die B (II)-Polymerasen funktionsgehemmt bzw. –inaktiv. Niedriges Salz (0.03 M NaCl) und hohes Salz (0.34-0.4 M NaCl) hingegen fĂŒhren beide im zellfreien System zur Auflockerung der Chromomeren. Solche kĂŒnstliche Dekondensation isolierter Chromosomen IV aus DMSO-behandelten Larven mit kollabierten BR1, 2, 3 fĂŒhrt zur Derepression der B (II)-Polymerasen. Auch alle anderen Puffs nativ isolierter Chromosomen I aus behandelten und nichtbehandelten Chironomus-Larven sind nach kĂŒnstlicher De- und Rekondensation in vitro auf einmal markiert. Riesenchromosomen besitzen also auf dem DNP-Template gebundene B (II)-Polymerasen. Vor allem hohes Salz (0.34-0.4 M NaCl) stimuliert die PolymerasenaktivitĂ€t. In Gegenwart von alpha-Amanitin bleibt die Bandenmarkierung aus. Die PolymerasenaktivitĂ€t ist mit Toluidinblau in nativen IS-Chromosomen als metachromatische FĂ€rbung in situ nachweisbar. Das Markierungsverhalten isolierter Chromosomen spricht fĂŒr die Lokalisation des wesentlichen genetischen Materials in Banden. Der in vivo stattfindende Puffing-Prozeß lĂ€ĂŸt sich hypothetisch in zwei Teilreaktionen untergliedern: Bei der Initialreaktion der Genaktivierung, dem primĂ€ren Puffing, wird die sterische Hemmwirkung der Chromatiden-Faltung spezifisch aufgehoben, was zu einem örtlich begrenzten Auflockern der Chromatide im jeweils zu aktivierenden Chromomer fĂŒhrt. Das typische Puffing findet in dieser Phase nicht statt. Nach dem primĂ€ren Puffing falten die B (II)-Polymerasen anscheinend autonom das jeweilige Chromomer weiter auf. Dieses typische, sekundĂ€re Puffing wird als das Resultat des Transkriptionsprozesses selbst aufgefaßt. Daß das sekundĂ€re Puffing im Normalfall ohne gleichzeitige RNA-Synthese stattfindet, ist auszuschließen. Teile dieser Dissertation wurden veröffentlicht in: Sass, H. (1980a). Features of in vitro puffing and RNA synthesis in polytene chromosomes of Chironomus. Chromosoma 78: 33-78 http://www.springerlink.com/index/10.1007/BF00291908 Sass, H. (1980b). Puffing und RNA-Synthese in larvalen und imaginalen PolytĂ€n-Chromosomen aus verschiedenen Geweben von Chironomus tentans. Biol. Zentralblatt 99: 399-428 Sass, H. (1980c). Hierarchy of fibrillar organization levels in the polytene interphase chromosomes of Chironomus. J. Cell Sci. 45: 269-293 http://jcs.biologists.org/cgi/reprint/45/1/269 Sass, H. (1981). Effects of DMSO on the structure and function of polytene chromosomes of Chironomus. Chromosoma 83: 619-643 http://www.springerlink.com/index/10.1007/BF00328523Structural and functional studies of Balbiani rings in Chironomus tentans 1) A new procedure is presented for isolating polytene interphase salivary gland chromosomes in its natural state from aquatic larvae of the midge Chironomus tentans. The individual chromosomes I, II, III and IV can be distinguished by their size and shape. By the possession of such ‘pure’ chromosomes new experiments were suddenly made feasible. Great opportunities are now open for the study of chromosome behavior, the chromatid fiber organization, the chromosomal distribution of RNA polymerase B (II) [RNA pol B (II)] and its RNA synthesis in vitro as compared to that in situ, i.e. the physiological environment of intact salivary glands. 2) Here in situ studies in C. tentans by electron microscopy (EM) have revealed that the characteristic pattern of polytene salivary gland chromosomes is caused by the aperiodic appearance of series of bands 0.1-0.6 ”m thick. Bands result from the association of identical chromomeres (= compacted fiber segments) at the same level. Bands 0.2-0.3 ”m thick are most frequently found. Thickness of interbands varies from 0.05-0.3 ”m. The intimate pairing of numerous copies of fibers in compact bands makes it difficult to identify a single chromatid (= haploid chromosome). A breakthrough came when oligotene Balbiani ring (BR)2 chromatid strands were thinly sectioned lengthwise. Pictures are given visualizing that chromomeric DNA has the appearance of irregular folded or coiled chromatid fibers, but the constituent fibers become relative straight and line up in parallel arrays in interchromomeres. 3) Although the multistranded, cable-like and highly polytenized isolated salivary chromosomes of C. tentans seemed virtually hopeless to study by Miller chromatin spreading technique with EM, this present studies demonstrate that one could learn some of the ultrastructural organization. The dispersal of polytene chromosomes in low-ionic-strength buffer results in destabilization of bands. Chromatin extruded from unfolded bands is composed of more or less twisted, individual loops 0.8-8.4 ”m long and 0.6-3 ”m apart consisting of duplex DNA and proteins. The looped chromatin structures contain 7.2-75 kilobases DNA. Some loops are transcribed and surrounded by portions of ribonucleoprotein (RNP). 4) The basic structural element of interbands and bands including puffs and nucleoli in C. tentans polytene chromosomes is the 110-130 A chromatid fiber, but their width varies from 110 to 300 A. Visually, there is no obvious indication in ultrathin sections that suggests the existing of repeating units, the nucleosomes, which constitute a chromatid. In contrast, the picture suddenly changed, when isolated salivary gland chromosomes were dispersed in low-ionic-strength buffer for EM-inspection. It now appears that the unravelled 110 A fiber shows nucleosomes in a continuous ‘beads-on-a-string’ morphology. Chromatid fibers in spread preparations of polytene chromosomes are at most 200-250 A in diameter. The larger fiber could reflect a higher-order chromatin structure regulated by nucleosomal folding or packaging events. 5) Evidence is presented that the size of a C. tentans Balbiani ring is not necessarily correlated with the length of its transcripts. Ultrathin sections did show, the only apparent difference between more or less puffed (expanded) BR 2s and BR 1s is a greater concentration of large 300-500 A RNP granules in the larger Balbiani rings. Aside from these findings, experimental evidence was provided that BR3 when excessively expanded (overshooting) in response to the drug DMSO (see below) is filled with small RNP granules. Prior to DMSO-stimulation, much less BR3-RNP granules are present at the transcriptionally active BR3 gene. However, BR3 is a special case. The existence of BR3-RNPs only 130-200 A in diameter had hitherto been unknown. Undoubtedly, these results demonstrate convincingly that BR3-RNPs must contain much shorter lengths of RNA than RNP-granules from BR2 and BR1. These results strongly imply a significant difference in gene organization between BR3 and BR2/BR1. In addition, progress toward understanding how the BR2 gene is transcribed is presented. For the first time, in Miller-spreads of isolated salivary gland chromosome IV, 33/”m BR2 gene transcripts have been identified. This evidence shows, the BR2 gene of C. tentans belongs to the class of intensively transcribed genes. There is one BR2 gene copy present in the haploid genome. Tandem repetition of transcribed BR2 genes was not found. Mature BR2-RNP granules ~ 500 A thick arise from filamentous precursor molecules and are released into the nuclear sap. While it is clear that 33/”m RNA pol B (II) transcribe the C. tentans BR2 gene, the size of BR2-RNA has been estimated to 6-10x10 to the power of 6 daltons. Figure 40 summarizes the fundamental BR2 gene transcription results. 6) A novel regulator mediating alterations of BR3-, BR2- and BR1-formation is dimethyl sulfoxide (DMSO). Exposure of C. tentans 4th instar larvae to 10% DMSO at 18°C first evokes within 2-3 hours of treatment a most extraordinary BR3 expansion. Such BR-overshooting experiments implicate one mode of DMSO-action may be the transcriptional activation of BR3 gene copies on sister chromatids for increased BR3 expression. In addition, this induction of BR3 and repression (or non-induction) of BR2 and BR1 are of only brief duration. After the 3rd hour of exposure to 10% DMSO the over-stimulated BR3 is reduced to normal dimensions, whereas BR1 and BR2 exhibit excessive puffing stimulation. Thus, BR3 and BR2/BR1 transcription are interconnected. After withdrawal of DMSO, a rapid uniform collapse of Balbiani rings and all other puffs occurs. Recovery proceeds as Balbiani rings and other puffs reappear. 7) Autoradiographic studies with tritium-labelled RNA precursor 3H-uridine performed on C. tentans salivary gland chromosomes IV revealed that the in vivo labelling corresponds to the altered size relationship. BR3 grows to enormous dimensions and is heavily labelled while BR2 and BR1 are drastically reduced and exhibit only very low 3H-uridine incorporation. After withdrawal of DMSO, all of the Balbiani rings and all of the other puffs recondense temporarily, and hardly incorporate any 3H-uridine in vivo. In parallel experiments, chromosomes IV with recondensed BR1, BR2 and BR3 were isolated and subsequently labelled with 3H-UTP in high salt (0.34-0.4 M NaCl). A surprising finding in these autoradiograms was that after the chromosomal decondensation in vitro, the BR-regions, in spite of the absence of puffing, do exhibit transcriptional activity of high labelling intensity, although less than in the puffed, ring-shaped in vivo BR-regions. Such rapid increase of radioactive precursor incorporation in vitro aroused much excitement. This key observation led to the conclusion that RNA pol B (II) is bound to the practically inactive BR1, BR2 and BR3 genes. These results prove that the chromosome decondensation under high salt greatly enhances the basic low rate of transcription in the collapsed BR-regions and many sites of chromosome IV and allows RNA pol B (II) to elongate. Under the experimental conditions used here for chromosome incubation in vitro, there is certainly no free RNA pol B (II) available to initiate RNA synthesis. Further support for the realization that these polytenes are permanently equipped with RNA pol B (II) was obtained by application of the same method to isolated chromosomes I, II and III. The results agree perfectly with those found for chromosome IV. Again, active RNA pol B (II) is present not only at the gene loci which are transcribed at a given stage, but also at all puff sites which are ever found in salivary glands. On the whole, then, there can be no doubt that the evidence from the here presented chromosome transcription autoradiography disproves the common belief that RNA pol B (II) is recruited to the promoters of genes when they become activated. This finding of the widespread chromosomal association of RNA pol B (II) also affords a ready explanation that the transcription elongation of the DNA template is rapidly activated by appropriate stimuli in vivo. From these advances a concept for the process of RNA synthesis and puffing is deduced. I prefer to postulate that puffing is a two-step mechanism of activation in transcription. In vivo, during primary puffing, which happens on the ultrastructural level and is visible in the electron microscope, there are changes in the arrangement or configuration of the chromatid fiber in bands. The chromomeric DNA is transiently dispersed from its usual tightly packed state. This is a necessary prerequisite to remove the sterical hindrance for RNA pol B (II) and to allow the enzyme the interaction with its chromatin environment to resume transcription elongation. As secondary puffing, different constellations of chromosome puffs, these light-optically visible expanded regions on polytene chromosomes, appear as the consequence of intense RNA synthetic activity at specific gene loci. Secondary puffing is not a necessary prerequisite for RNA synthesis, while, conversely, RNA synthesis is required for puff formation. Parts of this thesis have been published in: Sass, H. (1980a). Features of in vitro puffing and RNA synthesis in polytene chromosomes of Chironomus. Chromosoma 78: 33-78 http://www.springerlink.com/index/10.1007/BF00291908 Sass, H. (1980b). Puffing und RNA-Synthese in larvalen und imaginalen PolytĂ€n-Chromosomen aus verschiedenen Geweben von Chironomus tentans. Biol. Zentralblatt 99: 399-428 Sass, H. (1980c). Hierarchy of fibrillar organization levels in the polytene interphase chromosomes of Chironomus. J. Cell Sci. 45: 269-293 http://jcs.biologists.org/cgi/reprint/45/1/269 Sass, H. (1981). Effects of DMSO on the structure and function of polytene chromosomes of Chironomus. Chromosoma 83: 619-643 http://www.springerlink.com/index/10.1007/BF0032852

    Regelmechanismen und Determinanten der Transkription in PolytÀnchromosomen von Chironomus und Drosophila

    No full text
    Die kumulative Habil.‐Schrift grĂŒndet sich auf 6 Originalpublikationen, die beschreiben: [Sass, H. (1982), Cell 28: 269‐278]. RNA polymerase B in polytene chromosomes: Immunofluorescent and autoradiographic analysis during stimulated and repressed RNA synthesis. Elektronenmikroskopie charakterisierte das C. tentans Balbianiring BR2‐Gen von SpeicheldrĂŒsenchromosomen als hoch aktives 5‐6 ÎŒm langes single‐copy Gen, das 33/ÎŒm RNAPolymerasen B (Pol II) transkribieren (Diss., Sass, H., 1978, Univ. TĂŒbingen). Diese Immunfluoreszenzstudie ortet Pol II in allen Interbanden von Region IV‐3B10‐3B5 des nichtinduzierten BR2. Prominente Fluoreszenz im BR2‐Genort 3B9/10 zeigt, das BR2‐Gen ist prĂ€aktiv, wie erwartet. 3H‐Autoradiogramme beweisen, in allen fluoreszierenden BR2, BR1, BR3, Puffs, aufgelockerten Banden, Interbanden und Loci ohne Puffing, synthetisiert Pol II RNA. Die genomweite stĂ€ndige Pol II‐PrĂ€senz zeigt, dass, wie beim nichtinduzierten BR2‐Gen, bereits schon gebundene Pol II wohl auch andere Gene prĂ€aktiviert. So erfolgt die Regulation der Transkription mehr ĂŒber die transkriptionelle Elongation. Auch durch α‐Amanitin, oder Actinomycin D, oder Hitzeschock in vivo kollabierte BR2, BR1, BR3 besitzen Pol II. [Sass, H. (1984), Chromosoma 90: 20‐25]. Gene identification in polytene chromosomes: some Balbiani ring 2 gene sequences are located in an interband‐like region of Chironomus tentans. Immunfluoreszenz und 3H‐Autoradiographie zeigen, dass Injektionen von DRB in Larven die Balbianiringe (BR) sowie andere Puffs und deren Pol II‐Konzentration dramatisch reduzieren. Trotzdem zeigen 3H‐Uridin markierte SpeicheldrĂŒsenchromosomen, dass RNA‐Synthese doch in nichtinduzierten BR2, BR1, BR3 erfolgt, aber nur auf reduziertem Level. Das widerspricht der von EgyhĂĄzi E. (1975, PNAS 73:947‐950) propagierten „Inhibition of Balbiani ring RNA synthesis at the initiation level“ durch DRB. Vielmehr sieht es so aus, DRB wirkt bei der transkriptionellen Elongation inhibierend. Durch in situ‐Hybridisierung von Sequenzen klonierter BR2‐DNA wurde in SpeicheldrĂŒsenchromosom IV das BR2‐Gen in Region 3B9/10 direkt identifiziert. [Sass, H. and Pederson, T. (1984), J. Mol. Biol. 180: 911‐926]. Transcription‐dependent localization of U1 and U2 small nuclear ribonucleoproteins at major sites of gene activity in polytene chromosomes. Immunolokalisation von Sm‐, U1‐ und U2snRNP‐spezifischen Antigenen in SpeicheldrĂŒsenchromosomen von C. tentans hat zur Entdeckung der beim Spleißen von prÀ‐mRNA beteiligten U1/U2snRNPs in Balbianiringen BR2, BR1, BR3 sowie anderen Puffs und aufgelockerten Banden gefĂŒhrt. Die ĂŒberraschenden BR‐Daten zeigen erstmals: (i) Der Spleiß‐Apparat ist in Genloci mit intensiver RNA‐Synthese schon vorhanden. (ii) Immunfluoreszenz reflektiert den Exon‐Intron‐Bau dieser BR‐Gene. (iii) Transkription und spleißosomales Ausschneiden von Introns sind koordiniert. [Sass, H. (1989), Nucleic Acids Research 17: 10508]. Hsp82‐neo transposition vectors to study insertional mutagenesis in Drosophila melanogaster and tissue culture cells; [Sass, H. (1990), Gene 89: 179‐186]. P‐transposable vectors expressing a constitutive and thermoinducible hsp82‐neo fusion gene for Drosophila germline transformation and tissue‐culture transfection. Beschrieben sind Design, Konstruktion und Expression der Genfusion hsp82‐neo als ein in vivo selektierbares Reporter‐/Markergen, die Transposons P{hsp82‐neo/Adh} sowie P{hsp82‐neo} und Transformations‐Vektoren pHS22, pHS24, pHS85, pHS103 und pHS104. Sie stellen das von der Fliege gebildete Enzym bakteriellen Ursprungs, Neomycin‐Phosphotransferase II, fĂŒr die G418‐Selektion bereit, um die Position, Struktur, Expression und Funktion von Genen mittels hsp82-neo‐Mutagenese zu erforschen. [Sass, H. and Meselson, M. (1991), Proc. Natl. Acad. Sci. USA 88: 6795‐6799]. Dosage compensation of the Drosophila pseudoobscura Hsp82 gene and the D. melanogaster Adh gene at ectopic sites in D. melanogaster. Quantitative Unterschiede in der Dosiskompensation des X‐chromosomalen hsp82‐Gens von D. pseudoobscura und autosomalen Adh‐Gens von D. melanogaster wurden als Erhöhung der RNAMenge in D. melanogaster gemessen. Beide Transgene sind dosiskompensiert, sprang P{hsp82‐neo/Adh} in euchromatische Regionen des D. melanogaster X‐Chromosoms. Beide Transgene sind nicht dosiskompensiert, insertierte P{hsp82‐neo/Adh} ins ÎČ‐Heterochromatin in Region 20 an der Basis des X. Keine der zehn autosomalen Insertionen ist dosiskompensiert. Die Ergebnisse lassen vermuten, dass X‐chromosomale regulatorische Sequenzen, die fĂŒr die VerstĂ€rkung der GenaktivitĂ€t um Faktor 2 in MĂ€nnchen verantwortlich sind, gehĂ€uft im X vorkommen, jedoch im ÎČ‐Heterochromatin und den Autosomen fehlen. Das Kompensationsverhalten der transponierten Gene wird durch das neue chromosomale Milieu des Insertionsortes bestimmt

    Böschungssicherung mit gesteuerten DrÀnbohrungen

    No full text
    • 

    corecore