80 research outputs found

    Plastic Purity and Sacred Dairy

    Get PDF
    By investigating the growing use of plastics within Mongolian dairying, this paper explores emerging microbial/social assemblages as they relate to local and imported ideas of purity and hygiene. Although many Mongolian herders prefer to use dairy equipment made from materials such as wood and hide, these items are increasingly being replaced by plastic ones. As new infrastructure connects northern herders to more extensive markets, it presents challenges for herders and for the microbial communities with whom they co-exist, placing herders under increasing pressures to compete with large-scale dairy enterprises that brand, package and distribute standardised dairy products. Looking at the changing material culture of Mongolian dairying and its relationships with microbial communities, this paper examines two emergent notions of purity: the first in which sterility is generated and contained and the second in which living dairy is harnessed and grown

    Low-temperature properties of single-crystal CrB2_{2}

    Get PDF
    We report the low-temperature properties of 11^{11}B-enriched single-crystal CrB2_{2} as prepared from high-purity Cr and B powder by a solid-state reaction and optical float zoning. The electrical resistivity, ρxx\rho_{\rm xx}, Hall effect, ρxy\rho_{\rm xy}, and specific heat, CC, are characteristic of an exchange-enhanced Fermi liquid ground state, which develops a slightly anisotropic spin gap Δ220K\Delta \approx 220\,{\rm K} below TN=88KT_{\rm N}=88\,{\rm K}. This observation is corroborated by the absence of a Curie dependence in the magnetization for T0T\to0 reported in the literature. Comparison of CC with dρxx/dTd\rho_{\rm xx}/dT, where we infer lattice contributions from measurements of VB2_2, reveals strong antiferromagnetic spin fluctuations with a characteristic spin fluctuation temperature Tsf257KT_{\rm sf}\approx 257\,{\rm K} in the paramagnetic state, followed by a pronounced second-order mean-field transition at TNT_{\rm N}, and unusual excitations around TN/2\approx T_{\rm N}/2. The pronounced anisotropy of ρxx\rho_{\rm xx} above TNT_{\rm N} is characteristic of an easy-plane anisotropy of the spin fluctuations consistent with the magnetization. The ratio of the Curie-Weiss to the Neˊ\acute{\rm{e}}el temperatures, f=ΘCW/TN8.5f=-\Theta_{\rm CW}/T_{\rm N}\approx 8.5, inferred from the magnetization, implies strong geometric frustration. All physical properties are remarkably invariant under applied magnetic fields up to 14T14\,\,{\rm T}, the highest field studied. In contrast to earlier suggestions of local-moment magnetism our study identifies CrB2_{2} as a weak itinerant antiferromagnet par excellence with strong geometric frustration.Comment: 15 pages, 9 figure

    Man vs. machine: comparison of pharmacogenetic expert counselling with a clinical medication support system in a study with 200 genotyped patients

    Get PDF
    Background: Medication problems such as strong side effects or inefficacy occur frequently. At our university hospital, a consultation group of specialists takes care of patients suffering from medication problems. Nevertheless, the counselling of poly-treated patients is complex, as it requires the consideration of a large network of interactions between drugs and their targets, their metabolizing enzymes, and their transporters, etc. Purpose This study aims to check whether a score-based decision-support system (1) reduces the time and effort and (2) suggests solutions at the same quality level. Patients and methods: A total of 200 multimorbid, poly-treated patients with medication problems were included. All patients were considered twice: manually, as clinically established, and using the Drug-PIN decision-support system. Besides diagnoses, lab data (kidney, liver), phenotype (age, gender, BMI, habits), and genotype (genetic variants with actionable clinical evidence I or IIa) were considered, to eliminate potentially inappropriate medications and to select individually favourable drugs from existing medication classes. The algorithm is connected to automatically updated knowledge resources to provide reproducible up-to-date decision support. Results: The average turnaround time for manual poly-therapy counselling per patient ranges from 3 to 6 working hours, while it can be reduced to ten minutes using Drug-PIN. At the same time, the results of the novel computerized approach coincide with the manual approach at a level of > 90%. The holistic medication score can be used to find favourable drugs within a class of drugs and also to judge the severity of medication problems, to identify critical cases early and automatically. Conclusion: With the computerized version of this approach, it became possible to score all combinations of all alternative drugs from each class of drugs administered ("personalized medication landscape ") and to identify critical patients even before problems are reported ("medication alert"). Careful comparison of manual and score-based results shows that the incomplete manual consideration of genetic specialties and pharmacokinetic conflicts is responsible for most of the (minor) deviations between the two approaches. The meaning of the reduction of working time for experts by about 2 orders of magnitude should not be underestimated, as it enables practical application of personalized medicine in clinical routine

    Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death

    Get PDF
    Owing to lagging or insufficient neo-angiogenesis, hypoxia is a feature of most solid tumors. Hypoxic tumor regions contribute to resistance against antiproliferative chemotherapeutics, radiotherapy and immunotherapy. Targeting cells in hypoxic tumor areas is therefore an important strategy for cancer treatment. Most approaches for targeting hypoxic cells focus on the inhibition of hypoxia adaption pathways but only a limited number of compounds with the potential to specifically target hypoxic tumor regions have been identified. By using tumor spheroids in hypoxic conditions as screening system, we identified a set of compounds, including the phenothiazine antipsychotic Fluphenazine, as hits with novel mode of action. Fluphenazine functionally inhibits acid sphingomyelinase and causes cellular sphingomyelin accumulation, which induces cancer cell death specifically in hypoxic tumor spheroids. Moreover, we found that functional inhibition of acid sphingomyelinase leads to overactivation of hypoxia stress-response pathways and that hypoxia-specific cell death is mediated by the stress-responsive transcription factor ATF4. Taken together, the here presented data suggest a novel, yet unexplored mechanism in which induction of sphingolipid stress leads to the overactivation of hypoxia stress-response pathways and thereby promotes their pro-apoptotic tumor-suppressor functions to specifically kill cells in hypoxic tumor areas

    SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells

    Get PDF
    BACKGROUND Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 \textquotedbldon't eat me signal\textquotedbl is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML

    Phenotypic and molecular insights into CASK-related disorders in males

    Get PDF
    Background: Heterozygous loss-of-function mutations in the X-linked CASK gene cause progressive microcephaly with pontine and cerebellar hypoplasia (MICPCH) and severe intellectual disability (ID) in females. Different CASK mutations have also been reported in males. The associated phenotypes range from nonsyndromic ID to Ohtahara syndrome with cerebellar hypoplasia. However, the phenotypic spectrum in males has not been systematically evaluated to date. Methods: We identified a CASK alteration in 8 novel unrelated male patients by targeted Sanger sequencing, copy number analysis (MLPA and/or FISH) and array CGH. CASK transcripts were investigated by RT-PCR followed by sequencing. Immunoblotting was used to detect CASK protein in patient-derived cells. The clinical phenotype and natural history of the 8 patients and 28 CASK-mutation positive males reported previously were reviewed and correlated with available molecular data. Results: CASK alterations include one nonsense mutation, one 5-bp deletion, one mutation of the start codon, and five partial gene deletions and duplications; seven were de novo, including three somatic mosaicisms, and one was familial. In three subjects, specific mRNA junction fragments indicated in tandem duplication of CASK exons disrupting the integrity of the gene. The 5-bp deletion resulted in multiple aberrant CASK mRNAs. In fibroblasts from patients with a CASK loss-of-function mutation, no CASK protein could be detected. Individuals who are mosaic for a severe CASK mutation or carry a hypomorphic mutation still showed detectable amount of protein. Conclusions: Based on eight novel patients and all CASK-mutation positive males reported previously three phenotypic groups can be distinguished that represent a clinical continuum: (i) MICPCH with severe epileptic encephalopathy caused by hemizygous loss-of-function mutations, (ii) MICPCH associated with inactivating alterations in the mosaic state or a partly penetrant mutation, and (iii) syndromic/nonsyndromic mild to severe ID with or without nystagmus caused by CASK missense and splice mutations that leave the CASK protein intact but likely alter its function or reduce the amount of normal protein. Our findings facilitate focused testing of the CASK gene and interpreting sequence variants identified by next-generation sequencing in cases with a phenotype resembling either of the three groups

    Spinal fixation after laminectomy in pigs prevents postoperative spinal cord injury

    Get PDF
    BACKGROUND: A safe, effective, and ethically sound animal model is essential for preclinical research to investigate spinal medical devices. We report the initial failure of a porcine spinal survival model and a potential solution by fixating the spine. METHODS: Eleven female Dutch Landrace pigs underwent a spinal lumbar interlaminar decompression with durotomy and were randomized for implantation of a medical device or control group. Magnetic resonance imaging (MRI) was performed before termination. RESULTS: Neurological deficits were observed in 6 out of the first 8 animals. Three of these animals were terminated prematurely because they reached the predefined humane endpoint. Spinal cord compression and myelopathy was observed on postoperative MRI imaging. We hypothesized postoperative spinal instability with epidural hematoma, inherent to the biology of the model, and subsequent spinal cord injury as a potential cause. In the subsequent 3 animals, we fixated the spine with Lubra plates. All these animals recovered without neurological deficits. The extent of spinal cord compression on MRI was variable across animals and did not seem to correspond well with neurological outcome. CONCLUSION: This study shows that in a porcine in vivo model of interlaminar decompression and durotomy, fixation of the spine after lumbar interlaminar decompression is feasible and may improve neurological outcomes. Additional research is necessary to evaluate this hypothesis

    Prevalence and prognostic value of neurological affections in hospitalized patients with moderate to severe COVID-19 based on objective assessments.

    Get PDF
    Neurological manifestations of coronavirus disease 2019 (COVID-19) have been frequently described. In this prospective study of hospitalized COVID-19 patients without a history of neurological conditions, we aimed to analyze their prevalence and prognostic value based on established, standardized and objective methods. Patients were investigated using a multimodal electrophysiological approach, accompanied by neuropsychological and neurological examinations. Prevalence rates of central (CNS) and peripheral (PNS) nervous system affections were calculated and the relationship between neurological affections and mortality was analyzed using Firth logistic regression models. 184 patients without a history of neurological diseases could be enrolled. High rates of PNS affections were observed (66% of 138 patients receiving electrophysiological PNS examination). CNS affections were less common but still highly prevalent (33% of 139 examined patients). 63% of patients who underwent neuropsychological testing (n = 155) presented cognitive impairment. Logistic regression models revealed pathology in somatosensory evoked potentials as an independent risk factor of mortality (Odds Ratio: 6.10 [1.01-65.13], p = 0.049). We conclude that hospitalized patients with moderate to severe COVID-19 display high rates of PNS and CNS affection, which can be objectively assessed by electrophysiological examination. Electrophysiological assessment may have a prognostic value and could thus be helpful to identify patients at risk for deterioration
    corecore