106 research outputs found
Anisotropic relaxation in NADH excited states studied by polarization-modulation pump-probe transient spectroscopy
We present the results of experimental and theoretical studies of fast
anisotropic relaxation and rotational diffusion in the first electron excited
state of biological coenzyme NADH in water-ethanol solutions. The experiments
have been carried out by means of a novel polarization-modulation transient
method and fluorescence polarization spectroscopy. For interpretation of the
experimental results a model of the anisotropic relaxation in terms of scalar
and vector properties of transition dipole moments and based on the
Born-Oppenheimer approximation has been developed. The results obtained suggest
that the dynamics of anisotropic rovibronic relaxation in NADH under excitation
with 100~fs pump laser pulses can be characterised by a single vibration
relaxation time laying in the range 2--15~ps and a single rotation
diffusion time laying in the range 100--450~ps a subject of ethanol
concentration. The dependence of the times and on the
solution polarity (static permittivity) and viscosity has been determined and
analyzed. Limiting values of an important parameter describing the rotation of the transition dipole
moment in the course of vibrational relaxation has been determined from
experiment as function of the ethanol concentration and analyzed.Comment: 14 pages, 13 figure
FLORA: a novel method to predict protein function from structure in diverse superfamilies
Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues
Pandemic Boredom: Little Evidence That Lockdown-Related Boredom Affects Risky Public Health Behaviors Across 116 Countries
Some public officials have expressed concern that policies mandating collective public health behaviors (e.g., national/regional "lockdown ") may result in behavioral fatigue that ultimately renders such policies ineffective. Boredom, specifically, has been singled out as one potential risk factor for noncompliance. We examined whether there was empirical evidence to support this concern during the COVID-19 pandemic in a large cross-national sample of 63,336 community respondents from 116 countries. Although boredom was higher in countries with more COVID-19 cases and in countries that instituted more stringent lockdowns, such boredom did not predict longitudinal within-person decreases in social distancing behavior (or vice versa; n = 8,031) in early spring and summer of 2020. Overall, we found little evidence that changes in boredom predict individual public health behaviors (handwashing, staying home, self-quarantining, and avoiding crowds) over time, or that such behaviors had any reliable longitudinal effects on boredom itself. In summary, contrary to concerns, we found little evidence that boredom posed a public health risk during lockdown and quarantine
Domain architecture evolution of pattern-recognition receptors
In animals, the innate immune system is the first line of defense against invading microorganisms, and the pattern-recognition receptors (PRRs) are the key components of this system, detecting microbial invasion and initiating innate immune defenses. Two families of PRRs, the intracellular NOD-like receptors (NLRs) and the transmembrane Toll-like receptors (TLRs), are of particular interest because of their roles in a number of diseases. Understanding the evolutionary history of these families and their pattern of evolutionary changes may lead to new insights into the functioning of this critical system. We found that the evolution of both NLR and TLR families included massive species-specific expansions and domain shuffling in various lineages, which resulted in the same domain architectures evolving independently within different lineages in a process that fits the definition of parallel evolution. This observation illustrates both the dynamics of the innate immune system and the effects of “combinatorially constrained” evolution, where existence of the limited numbers of functionally relevant domains constrains the choices of domain architectures for new members in the family, resulting in the emergence of independently evolved proteins with identical domain architectures, often mistaken for orthologs
Trust in government regarding COVID-19 and its associations with preventive health behaviour and prosocial behaviour during the pandemic: A cross-sectional and longitudinal study
Background The effective implementation of government policies and measures for controlling the coronavirus disease 2019 (COVID-19) pandemic requires compliance from the public. This study aimed to examine cross-sectional and longitudinal associations of trust in government regarding COVID-19 control with the adoption of recommended health behaviours and prosocial behaviours, and potential determinants of trust in government during the pandemic. Methods This study analysed data from the PsyCorona Survey, an international project on COVID-19 that included 23 733 participants from 23 countries (representative in age and gender distributions by country) at baseline survey and 7785 participants who also completed follow-up surveys. Specification curve analysis was used to examine concurrent associations between trust in government and self-reported behaviours. We further used structural equation model to explore potential determinants of trust in government. Multilevel linear regressions were used to examine associations between baseline trust and longitudinal behavioural changes. Results Higher trust in government regarding COVID-19 control was significantly associated with higher adoption of health behaviours (handwashing, avoiding crowded space, self-quarantine) and prosocial behaviours in specification curve analyses (median standardised beta = 0.173 and 0.229, p < 0.001). Government perceived as well organised, disseminating clear messages and knowledge on COVID-19, and perceived fairness were positively associated with trust in government (standardised beta = 0.358, 0.230, 0.056, and 0.249, p < 0.01). Higher trust at baseline survey was significantly associated with lower rate of decline in health behaviours over time (p for interaction = 0.001). Conclusions These results highlighted the importance of trust in government in the control of COVID-19
Conceptual replication and extension of health behavior theories' predictions in the context of COVID-19: Evidence across countries and over time
Virus mitigation behavior has been and still is a powerful means to fight the COVID-19 pandemic irrespective of the availability of pharmaceutical means (e.g., vaccines). We drew on health behavior theories to predict health-protective (coping-specific) responses and hope (coping non-specific response) from health-related cognitions (vulnerability, severity, self-assessed knowledge, efficacy). In an extension of this model, we proposed orientation to internal (problem-focused coping) and external (country capability) coping resources as antecedents of health protection and hope; health-related cognitions were assumed as mediators of this link. We tested these predictions in a large multi-national multi-wave study with a cross-sectional
panel at T1 (Baseline, March-April 2020; N = 57,631 in 113 countries) and a panel subsample at two later time points, T2 (November 2020; N = 3097) and T3 (April 2021; N = 2628). Multilevel models showed that health-related cognitions predicted health-protective responses and
hope. Problem-focused coping was mainly linked to health-protective behaviors (T1-T3), whereas country capability was mainly linked to hope (T1-T3). These relationships were partially mediated by health-related cognitions. We conceptually replicated predictions of health behavior theories within a real health threat, further suggesting how
different coping resources are associated with qualitatively distinct outcomes. Both patterns were consistent across countries and time
Lives versus Livelihoods? Perceived economic risk has a stronger association with support for COVID-19 preventive measures than perceived health risk
This paper examines whether compliance with COVID-19 mitigation measures is motivated by wanting to save lives or save the economy (or both), and which implications this carries to fight the pandemic. National representative samples were collected from 24 countries (N = 25,435). The main predictors were (1) perceived risk to contract coronavirus, (2) perceived risk to suffer economic losses due to coronavirus, and (3) their interaction effect. Individual and country-level variables were added as covariates in multilevel regression models. We examined compliance with various preventive health behaviors and support for strict containment policies. Results show that perceived economic risk consistently predicted mitigation behavior and policy support—and its effects were positive. Perceived health risk had mixed effects. Only two significant interactions between health and economic risk were identified—both positive
Identifying important individual‐ and country‐level predictors of conspiracy theorizing: a machine learning analysis
Psychological research on the predictors of conspiracy theorizing—explaining important social and political events or circumstances as secret plots by malevolent groups—has flourished in recent years. However, research has typically examined only a small number of predictors in one, or a small number of, national contexts. Such approaches make it difficult to examine the relative importance of predictors, and risk overlooking some potentially relevant variables altogether. To overcome this limitation, the present study used machine learning to rank-order the importance of 115 individual- and country-level variables in predicting conspiracy theorizing. Data were collected from 56,072 respondents across 28 countries during the early weeks of the COVID-19 pandemic. Echoing previous findings, important predictors at the individual level included societal discontent, paranoia, and personal struggle. Contrary to prior research, important country-level predictors included indicators of political stability and effective government COVID response, which suggests that conspiracy theorizing may thrive in relatively well-functioning democracies
- …