research

Anisotropic relaxation in NADH excited states studied by polarization-modulation pump-probe transient spectroscopy

Abstract

We present the results of experimental and theoretical studies of fast anisotropic relaxation and rotational diffusion in the first electron excited state of biological coenzyme NADH in water-ethanol solutions. The experiments have been carried out by means of a novel polarization-modulation transient method and fluorescence polarization spectroscopy. For interpretation of the experimental results a model of the anisotropic relaxation in terms of scalar and vector properties of transition dipole moments and based on the Born-Oppenheimer approximation has been developed. The results obtained suggest that the dynamics of anisotropic rovibronic relaxation in NADH under excitation with 100~fs pump laser pulses can be characterised by a single vibration relaxation time τv\tau_v laying in the range 2--15~ps and a single rotation diffusion time τr\tau_r laying in the range 100--450~ps a subject of ethanol concentration. The dependence of the times τv\tau_v and τr\tau_r on the solution polarity (static permittivity) and viscosity has been determined and analyzed. Limiting values of an important parameter P2(cosθ(t))\langle P_2(\cos\theta(t))\rangle describing the rotation of the transition dipole moment in the course of vibrational relaxation has been determined from experiment as function of the ethanol concentration and analyzed.Comment: 14 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions