153 research outputs found

    Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    Full text link
    The effects of a new triple-α\alpha reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, dM/dt(M˙)dM/dt (\dot{M}), of helium from 3×1010Myr13\times10^{-10} M_{\odot} \rm yr^{-1} to 3×108Myr13\times10^{-8} M_{\odot} \rm yr^{-1}, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than M˙3×108Myr1\dot{M}\simeq 3\times10^{-8} M_{\odot} \rm yr^{-1}. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK rate would be reduced by a factor of 102310^{2-3} for 10810^8 K in the range of the observational errors.Comment: 10 pages, 4 figure

    Simulation of a high-speed demultiplexer based on two-photon absorption in semiconductor devices

    Get PDF
    In this paper, we present a theoretical model of an all-optical demultiplexer based on two-photon absorption in a specially designed semiconductor micro-cavity for use in an optical time division multiplexed system. We show that it is possible to achieve error-free demultiplexing of a 250 Gbit/s OTDM signal (25 × 10 Gbit/s channels) using a control-to-signal peak pulse power ratios of around 30:1 with a device bandwidth of approximately 30 GHz

    Multi-Modal Analysis of Vibration and Meteorological Data for Structures on the World Heritage Site “Battleship Island”

    Get PDF
    This paper reports the results of vibration and meteorological observations of a buildng built on Hashima, Nagasaki, southern part of Japan, which was registered as a World Heritage Site in 2015 [1], and analyzes its dynamic characteristics. Hashima is called "Battleship Island" because its appearance resembles a battleship due to the many buildings standing upon it. The structure contributing most to the battleship appearance is No. 3 Building. An accelerometer and a weather sensor have been installed in No. 3 Building for long-term measurements. Multi-modal analysis of vibration and meteorological data was performed for 5 months, and the dynamic characteristics of No. 3 Building were examined

    Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

    Get PDF
    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the ‘aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the ‘aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth

    Re-creation of site-specific multi-directional waves with non-collinear current

    Get PDF
    Site-specific wave data can be used to improve the realism of tank test conditions and resulting outputs. If this data is recorded in the presence of a current, then the combined conditions must be re-created to ensure wave power, wavelength and steepness are correctly represented in a tank. In this paper we explore the impacts of currents on the wave field and demonstrate a simple, effective methodology for re-creating combined wave-current scenarios. Regular waves, a parametric unidirectional spectrum, and a complex site-specific directional sea state were re-created with current velocities representing 0.25, 0.5, and 1.0 m/s full scale. Waves were generated at a number of angles relative to the current, providing observations of both collinear and non-collinear wave-current interactions. Wave amplitudes transformed by the current were measured and corrected linearly, ensuring desired frequency and wavenumber spectra in the presence of current were obtained. This empirical method proved effective after a single iteration. Frequency spectra were within 3% of desired and wave heights normally within 1%. The generation-measurement-correction procedure presented enables effective re-creation of complex wave-current scenarios. This capability will increase the realism of tank testing, and help de-risk devices prior to deployment at sea

    Submillimeter Array Observations of NGC 2264-C: Molecular Outflows and Driving Sources

    Get PDF
    We present 1.3 mm Submillimeter Array (SMA) observations at ∼3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5−4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5−4) emission reveals the presence of two collimated, high-velocity (up to 30 km s−1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature
    corecore