117 research outputs found

    Criteria for effective zero-deforestation commitments

    Get PDF
    Zero-deforestation commitments are a type of voluntary sustainability initiative that companies adopt to signal their intention to reduce or eliminate deforestation associated with commodities that they produce, trade, and/or sell. Because each company defines its own zero-deforestation commitment goals and implementation mechanisms, commitment content varies widely. This creates challenges for the assessment of commitment implementation or effectiveness. Here, we develop criteria to assess the potential effectiveness of zero-deforestation commitments at reducing deforestation within a company supply chain, regionally, and globally. We apply these criteria to evaluate 52 zero-deforestation commitments made by companies identified by Forest 500 as having high deforestation risk. While our assessment indicates that existing commitments converge with several criteria for effectiveness, they fall short in a few key ways. First, they cover just a small share of the global market for deforestation-risk commodities, which means that their global impact is likely to be small. Second, biome-wide implementation is only achieved in the Brazilian Amazon. Outside this region, implementation occurs mainly through certification programs, which are not adopted by all producers and lack third-party near-real time deforestation monitoring. Additionally, around half of all commitments include zero-net deforestation targets and future implementation deadlines, both of which are design elements that may reduce effectiveness. Zero-net targets allow promises of future reforestation to compensate for current forest loss, while future implementation deadlines allow for preemptive clearing. To increase the likelihood that commitments will lead to reduced deforestation across all scales, more companies should adopt zero-gross deforestation targets with immediate implementation deadlines and clear sanction-based implementation mechanisms in biomes with high risk of forest to commodity conversion.ISSN:0959-3780ISSN:1872-949

    Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion

    Get PDF
    yesUranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, “Pacman” geometry that stabilizes the UV oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg−N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U−O−Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxogroup

    Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes

    Get PDF
       Pentagonal bipyramidal uranyl complexes of salen ligands, N,N’-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = tBu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO22+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate / phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para-phenolate substituents is increased (NMe2 > OMe > tBu)
    • 

    corecore