65 research outputs found

    Abnormal Resting State fMRI Activity Predicts Processing Speed Deficits in First-Episode Psychosis

    Get PDF
    Little is known regarding the neuropsychological significance of resting state functional magnetic resonance imaging (rs-fMRI) activity early in the course of psychosis. Moreover, no studies have used different approaches for analysis of rs-fMRI activity and examined gray matter thickness in the same cohort. In this study, 41 patients experiencing a first-episode of psychosis (including N = 17 who were antipsychotic drug-naive at the time of scanning) and 41 individually age-and sex-matched healthy volunteers completed rs-fMRI and structural MRI exams and neuropsychological assessments. We computed correlation matrices for 266 regions-of-interest across the brain to assess global connectivity. In addition, independent component analysis (ICA) was used to assess group differences in the expression of rs-fMRI activity within 20 predefined publicly available templates. Patients demonstrated lower overall rs-fMRI global connectivity compared with healthy volunteers without associated group differences in gray matter thickness assessed within the same regions-of-interest used in this analysis. Similarly, ICA revealed worse rs-fMRI expression scores across all 20 networks in patients compared with healthy volunteers, with posthoc analyses revealing significant (

    Force-dependent allostery of the α-catenin actinbinding domain controls adherens junction dynamics and functions

    Get PDF
    α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis

    Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems

    Get PDF
    The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of  80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency

    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    Get PDF
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme

    Association Between Duration of Untreated Psychosis and Frontostriatal Connectivity During Maintenance of Visuospatial Working Memory

    No full text
    © 2019 Society of Biological Psychiatry Background: A longer duration of untreated psychosis (DUP)has been linked with poor clinical outcomes and variation in resting-state striatal connectivity with central executive regions. However, the link between DUP and task-based activation of executive neurocognition has not previously been examined. This functional magnetic resonance imaging study examined the association between DUP and both activation and frontostriatal functional connectivity during a visual working memory (WM)paradigm in patients with first-episode psychosis. Methods: Patients with first-episode psychosis (n = 37)underwent functional magnetic resonance imaging scanning while performing a visual WM task. At the single-subject level, task conditions were modeled; at the group level, each condition was examined along with DUP. Activation was examined within the dorsolateral prefrontal cortex, a primary region supporting visual WM activation. Frontostriatal functional connectivity during the WM was examined via psychophysical interaction between the dorsal caudate and the dorsolateral prefrontal cortex. Results were compared with a reference range of connectivity values in a matched group of healthy volunteers (n = 25). Task performance was also examined in relation to neuroimaging findings. Results: No significant association was observed between DUP and WM activation. Longer DUP showed less functional frontostriatal connectivity with the maintenance of increasing WM load. Results were not related to task performance measures, consistent with previous work. Conclusions: Our data suggest that DUP may affect frontostriatal circuitry that supports executive functioning. Future work is necessary to examine if these findings contribute to the mechanism underlying the relationship between DUP and worsened clinical outcomes
    corecore