5 research outputs found

    Characterization of Yersinia pestis Phage Lytic Activity in Human Whole Blood for the Selection of Efficient Therapeutic Phages

    No full text
    The global increase in multidrug-resistant (MDR) pathogenic bacteria has led to growing interest in bacteriophage (“phage”) therapy. Therapeutic phages are usually selected based on their ability to infect and lyse target bacteria, using in vitro assays. In these assays, phage infection is determined using target bacteria grown in standard commercial rich media, while evaluation of the actual therapeutic activity requires the presence of human blood. In the present work, we characterized the ability of two different Yersinia pestis lytic phages (ϕA1122 and PST) to infect and kill a luminescent Y. pestis EV76 strain suspended in Brain Heart Infusion (BHI)-rich medium or in human whole blood, simulating the host environment. We found that the ability of the phages to infect and lyse blood-suspended Y. pestis was not correlated with their ability to infect and lyse BHI-suspended bacteria. While the two different phages exhibited efficient infective capacity in a BHI-suspended culture, only the PST phage showed efficient lysis ability against blood-suspended bacteria. Therefore, we recommend that for personalized phage therapy, selection of phage(s) for efficient treatment of patients suffering from MDR bacterial infections should include prior testing of the candidate phage(s) for their lysis ability in the presence of human blood

    Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague

    No full text
    Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains

    Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague

    No full text
    Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains
    corecore