31 research outputs found

    Monitoring and Inverse Dispersion Modeling to Quantify VOCs from MSW Landfill

    Get PDF
    In USA, the Municipal Solid Waste (MSW) landfills accumulate about 130 million tons of solid waste every year. A significant amount of biodegradable solid waste is converted to landfill gas due to anaerobic stabilization by bacteria. These biochemical reactions produce volatile organic compounds (VOCs) like methane and others. Due to heterogeneity in refuse composition, unpredictable distribution of favorable environmental conditions for bacterial actions and highly uncertain pathway of gases, estimation of landfill gas emission for a particular landfill is complex. However, it is important to quantify landfill gases for health risk assessment and energy recovery purposes. This research is based on the monitoring and modeling methodology proposed by researchers at University of Central Florida is reported in this thesis. River Birch Sub-title D landfill, Westwego, LA was selected as the study area. The total emission calculated using the mathematical model ran on MATLAB is comparable with the result obtained from EPA LandGEM model, using historical waste deposition record

    Monitoring and Inverse Dispersion Modeling to Quantify VOCs from MSW Landfill

    Get PDF
    In USA, the Municipal Solid Waste (MSW) landfills accumulate about 130 million tons of solid waste every year. A significant amount of biodegradable solid waste is converted to landfill gas due to anaerobic stabilization by bacteria. These biochemical reactions produce volatile organic compounds (VOCs) like methane and others. Due to heterogeneity in refuse composition, unpredictable distribution of favorable environmental conditions for bacterial actions and highly uncertain pathway of gases, estimation of landfill gas emission for a particular landfill is complex. However, it is important to quantify landfill gases for health risk assessment and energy recovery purposes. This research is based on the monitoring and modeling methodology proposed by researchers at University of Central Florida is reported in this thesis. River Birch Sub-title D landfill, Westwego, LA was selected as the study area. The total emission calculated using the mathematical model ran on MATLAB is comparable with the result obtained from EPA LandGEM model, using historical waste deposition record

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Thermal analysis of plate condensers in presence of flow maldistribution

    No full text
    Flow maldistribution in plate heat exchangers causes deterioration of both thermal and hydraulic performance. The situation becomes more complicated for two-phase flows during condensation where uneven distribution of the liquid to the channels reduces heat transfer due to high liquid flooding. The present study evaluates the thermal performance of falling film plate condensers with flow maldistribution from port to channel considering the heat transfer coefficient inside the channels as a function of channel flow rate. A generalized mathematical model has been developed to investigate the effect of maldistribution on the thermal performance as well as the exit quality of vapor. A wide range of parametric study is presented, which shows the effects of the mass flow rate ratio of cold fluid and two-phase fluid, flow configuration, number of channels and correlation for the heat transfer coefficient. The analysis presented here also suggests an improved method for heat transfer data analysis for plate condensers
    corecore