14 research outputs found

    The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. Results: FDRs-BD had significantly larger ICV (d = +0.16, q <.05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = −0.12, q <.05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < −0.09, q <.05 corrected); and third ventricle was larger (d = +0.15, q <.05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct

    Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives

    No full text
    Background: Bipolar disorder (BD) is a highly heritable mental illness which is associated with neuroanatomical abnormalities. Investigating healthy individuals at high genetic risk for bipolar disorder may help to identify neuroanatomical markers of risk and resilience without the confounding effects of burden of illness or medication

    Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives

    Get PDF
    Objectives: So far, few studies have investigated cortical thickness (CT) and surface area (SA) measures in bipolar disorder type I (BDI) in comparison to a high genetic risk group such as first-degree relatives (FR). This study aimed to examine CT and SA differences between BDI, FR and healthy controls (HC). Methods: 3D T1 magnetic resonance images were acquired from 27 euthymic BDI patients, 24 unaffected FR and 29 HC. CT and SA measures were obtained with FreeSurfer version 5.3.0. Generalized estimating equations were used to compare CT and SA between groups. Group comparisons were repeated with restricting the FR group to 17 siblings (FR-SB) only. Results: Mean age in years was 36.3 ± 9.5 for BDI, 32.1 ± 10.9 for FR, 34.7 ± 9.8 for FR-SB and 33.1 ± 9.0 for HC group respectively. BDI patients revealed larger SA of left pars triangularis (LPT) compared to HC (p = .001). In addition, increased SA in superior temporal cortex (STC) in FR-SB group compared to HC was identified (p = .0001). Conclusions: Our result of increased SA in LPT of BDI could be a disease marker and increased SA in STC of FR-SB could be a marker related with resilience to illness. Keywords: Bipolar disorder type I, First-degree relative, Cortical thickness, Endophenotype, Surface are

    Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives

    No full text
    Objectives: So far, few studies have investigated cortical thickness (CT) and surface area (SA) measures in bipolar disorder type I (BDI) in comparison to a high genetic risk group such as first-degree relatives (FR). This study aimed to examine CT and SA differences between BDI, FR and healthy controls (HC)

    Abnormal white matter integrity in synthetic cannabinoid users

    No full text
    Synthetic cannabinoids have become increasingly popular in the last few years especially among adolescents and young adults. However, no previous studies have assessed the effects of synthetic cannabinoids on the structure of the human brain. Understanding the harms of synthetic cannabinoid use on brain structure is therefore crucial given its increasing use. Diffusion tensor imaging (DTI) was performed in 22 patients who used synthetic cannabinoids more than five times a week for at least 1 year and 18 healthy controls. Fractional anisotropy (FA) was significantly reduced in the cannabinoid group compared to controls in a cluster of white matter voxels spanning the left temporal lobe, subcortical structures and brainstem. This cluster was predominantly traversed by the inferior frontooccipital fasciculus, inferior longitudinal fasciculus, fornix, cingulum-hippocampus and corticospinal tracts. Long-term use of synthetic cannabinoids is associated with white matter abnormalities in adolescents and young adults. Disturbed brain connectivity in synthetic cannabinoid users may underlie cognitive impairment and vulnerability to psychosis. (C) 2016 Elsevier B.V. and ECNP. All rights reserved

    Prefrontal cortical response to emotional faces in individuals with major depressive disorder in remission

    No full text
    Abnormalities in the response of the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to negative emotional stimuli have been reported in acutely depressed patients. However, there is a paucity of studies conducted in unmedicated individuals with major depressive disorder in remission (rMDD) to assess whether these are trait abnormalities. To address this issue, 19 medication-free rMDD individuals and 20 healthy comparison (HC) participants were scanned using functional magnetic resonance imaging while performing an implicit emotion processing task in which they labeled the gender of faces depicting negative (fearful), positive (happy) and neutral facial expressions. The rMDD and HC groups were compared using a region-of-interest approach for two contrasts: fear vs. neutral and happy vs. neutral. Relative to HC, rMDD showed reduced activation in left OFC and DLPFC to fearful (vs. neutral) faces. Right DLPFC activation to fearful (vs. neutral) faces in the rMDD group showed a significant positive correlation with duration of euthymia. The findings support deficits in left OFC and DLPFC responses to negative emotional stimuli during euthymic periods of MDD, which may reflect trait markers of the illness or a 'scar' due to previous depression. Recovery may also be associated with compensatory increases in right DLPFC functioning
    corecore