7 research outputs found

    Pathways affected by asbestos exposure in normal and tumour tissue of lung cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on asbestos-induced tumourigenesis have indicated the role of, e.g., reactive oxygen/nitrogen species, mitochondria, as well as NF-κB and MAPK signalling pathways. The exact molecular mechanisms contributing to asbestos-mediated carcinogenesis are, however, still to be characterized.</p> <p>Methods</p> <p>In this study, gene expression data analyses together with gene annotation data from the Gene Ontology (GO) database were utilized to identify pathways that are differentially regulated in lung and tumour tissues between asbestos-exposed and non-exposed lung cancer patients. Differentially regulated pathways were identified from gene expression data from 14 asbestos-exposed and 14 non-exposed lung cancer patients using custom-made software and Iterative Group Analysis (iGA). Western blotting was used to further characterize the findings, specifically to determine the protein levels of UBA1 and UBA7.</p> <p>Results</p> <p>Differences between asbestos-related and non-related lung tumours were detected in pathways associated with, e.g., ion transport, NF-κB signalling, DNA repair, as well as spliceosome and nucleosome complexes. A notable fraction of the pathways down-regulated in both normal and tumour tissue of the asbestos-exposed patients were related to protein ubiquitination, a versatile process regulating, for instance, DNA repair, cell cycle, and apoptosis, and thus being also a significant contributor of carcinogenesis. Even though UBA1 or UBA7, the early enzymes involved in protein ubiquitination and ubiquitin-like regulation of target proteins, did not underlie the exposure-related deregulation of ubiquitination, a difference was detected in the UBA1 and UBA7 levels between squamous cell carcinomas and respective normal lung tissue (p = 0.02 and p = 0.01) without regard to exposure status.</p> <p>Conclusion</p> <p>Our results indicate alterations in protein ubiquitination related both to cancer type and asbestos. We present for the first time pathway analysis results on asbestos-associated lung cancer, providing important insight into the most relevant targets for future research.</p

    Simultaneous Underexpression of let-7a-5p and let-7f-5p microRNAs in Plasma and Stool Samples from Early Stage Colorectal Carcinoma: Supplementary Issue: Biomarkers for Colon Cancer

    Get PDF
    Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer death worldwide. Early detection of CRC can improve patient survival rates; thus, the identification of noninvasive diagnostic markers is urgently needed. MicroRNAs (miRNAs) have extensive potential to diagnose several diseases, including cancer. In this study, we compared the expression pattern of miRNAs from plasma and stool samples of patients with early stages of CRC (I, II) with that of healthy subjects. We performed miRNA profiling using microarrays on plasma and stool samples of eight patients with CRC and four healthy subjects. Seven miRNAs were found to be underexpressed in both plasma and stool samples of patients with CRC versus healthy subjects. Then, we aimed to verify two out of these seven differentially expressed miRNAs (let-7a-5p and let-7f-5p) by quantitative reverse transcriptase polymerase chain reaction on a larger set of plasma and stool samples of 51 patients with CRC and 26 healthy subjects. We confirmed the results of microarray analysis since their expression was significantly lower in stool and plasma samples of patients with CRC. Moreover, receiver operating characteristic curve analysis demonstrated that fecal let-7f expression levels have significant sensitivity and specificity to distinguish between patients with CRC and healthy subjects. In conclusion, if the results are confirmed in larger series of patients, underexpressed let-7a-5p and let-7f-5p miRNAs in both plasma and stool samples of patients with CRC may serve potentially as noninvasive molecular biomarkers for the early detection of CRC.Peer reviewe

    Simultaneous underexpression of let-7a-5p and let-7f-5p microRNAs in plasma and stool samples from early stage colorectal carcinoma

    No full text
    The study was supported by Novartis, Sigrid Jusélius Foundation, and Cancer Society of Finland. The authors confirm that the funder had no influence over the study design, content of the article, or selection of this journal.Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer death worldwide. Early detection of CRC can improve patient survival rates; thus, the identification of noninvasive diagnostic markers is urgently needed. MicroRNAs (miRNAs) have extensive potential to diagnose several diseases, including cancer. In this study, we compared the expression pattern of miRNAs from plasma and stool samples of patients with early stages of CRC (I, II) with that of healthy subjects. We performed miRNA profiling using microarrays on plasma and stool samples of eight patients with CRC and four healthy subjects. Seven miRNAs were found to be underexpressed in both plasma and stool samples of patients with CRC versus healthy subjects. Then, we aimed to verify two out of these seven differentially expressed miRNAs (let-7a-5p and let-7f-5p) by quantitative reverse transcriptase polymerase chain reaction on a larger set of plasma and stool samples of 51 patients with CRC and 26 healthy subjects. We confirmed the results of microarray analysis since their expression was significantly lower in stool and plasma samples of patients with CRC. Moreover, receiver operating characteristic curve analysis demonstrated that fecal let-7f expression levels have significant sensitivity and specificity to distinguish between patients with CRC and healthy subjects. In conclusion, if the results are confirmed in larger series of patients, underexpressed let-7a-5p and let-7f-5p miRNAs in both plasma and stool samples of patients with CRC may serve potentially as noninvasive molecular biomarkers for the early detection of CRC
    corecore