80 research outputs found

    Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway

    Get PDF
    Diatoms are ubiquitous microalgae that have developed remarkable metabolic plasticity and gene diversification. Here we report the first elucidation of the complete biosynthesis of sterols in the lineage. The study has been carried out on the bloom-forming species Skeletonema marinoi and Cyclotella cryptica that synthesise an ensemble of sterols with chemotypes of animals (cholesterol and desmosterol), plants (dihydrobrassicasterol and 24-methylene cholesterol), algae (fucosterol) and marine invertebrates (clionasterol). In both species, sterols derive from mevalonate through cyclization of squalene to cycloartenol by cycloartenol synthase. The pathway anticipates synthesis of cholesterol by enzymes of the phytosterol route in plants, as recently reported in Solanaceae. Major divergences stem from reduction of Δ24(28) and Δ24(25) double bonds which, in diatoms, are apparently dependent on sterol reductases of fungi, algae and animals. Phylogenetic comparison revealed a good level of similarity between the sterol biosynthetic genes of S. marinoi and C. cryptica with those in the genomes of the other diatoms sequenced so far

    The dual impact of Ostreopsis cf. ovata on Mytilus galloprovincialis and Paracentrotus lividus: Toxin accumulation and pathological aspects

    Get PDF
    Blooms of the toxic dinoflagellates Ostreopsis have become common along rocky shores of the Mediterranean Sea. In addition to health problems for beach-goers, Ostreopsis toxins may accumulate in benthic marine animals used for human consumption, which however at times have shown signals of stress and even mortality. In order to elucidate the actual relationships between Ostreopsis and benthic invertebrates, we exposed mussels Mytilus galloprovincialis and sea urchins Paracentrotus lividus from the Gulf of Naples to cultures and natural material of O. cf. ovata and assessed feeding and adverse effects on the animals, along with their acquired toxicity. Mussels exposed to O. cf. ovata for 24 hours filtered the microalgae at different rates, depending on both mussel size and microalgal density, and became weakly toxic in some cases. Under longer exposure most animals died and all survivors were toxic. Detoxification of a naturally toxic mussel populations from an area affected by O. cf. ovata blooms took more than two weeks. Sea urchins fed with the red alga Asparagopsis taxiformis epiphytised by O. cf. ovata did not show damages and became mildly toxic in some cases. However, the direct exposure of sea urchins to O. cf. ovata cultures caused the partial or total loss of the spines in a density-dependent way, with the death of the animals at the highest microalgal concentrations. Milder effects were registered with sonicated cultures or toxin extracts. Our results indicate that the balance between toxicity and animal health in these invertebrates depends on the mode and intensity of exposure to the toxic microalga, while the response varies between the two species but also within the same species. This scenario matches the variety of responses of benthic populations recorded in the natural environment in areas affected by O. cf. ovata blooms

    Probing the therapeutic potential of marine phyla by spe extraction

    Get PDF
    The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays—two phenotypic and one enzymatic—for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic target

    Epigenetic fingerprint in endometrial carcinogenesis: the hypothesis of a uterine field cancerization.

    Get PDF
    "Abstract. Transcriptional silencing by CpG island hypermethylation plays a critical role in endometrial carcinogenesis. In a collection of benign, premalignant and malignant endometrial lesions, a methylation profile of a complete gene panel, such steroid receptors (ERα, PR), DNA mismatch repair (hMLH1), tumor-suppressor genes (CDKN2A\/P16 and CDH1\/E-CADHERIN) and WNT pathway inhibitors (SFRP1, SFRP2, SFRP4, SFRP5) was investigated in order to demonstrate their pathogenetic role in endometrial lesions. Our results indicate that gene hypermethylation may be an early event in endometrial endometrioid tumorigenesis. Particularly, ERα, PR, hMLH1, CDKN2A\/P16, SFRP1, SFRP2 and SFRP5 revealed a promoter methylation status in endometrioid carcinoma, whereas SFRP4 showed demethylation in cancer. P53 immunostaining showed weak-focal protein expression level both in hyperplasic lesions and in endometrioid cancer. Non-endometrioid cancers showed very low levels of epigenetic methylations, but strong P53 protein positivity. Fisher exact test revealed a statistically significant association between hMLH1, CDKN2A\/P16 and SFRP1 genes methylation and endometrioid carcinomas and between hMLH1 gene methylation and peritumoral endometrium (p < 0.05). Our data confirm that the methylation profile of the peritumoral endometrium is different from the altered molecular background of benign endometrial polyps and hyperplasias. Therefore, our findings suggest that the methylation of hMLH1, CDKN2A\/P16 and SFRP1 may clearly distinguish between benign and malignant lesions. Finally, this study assessed that the use of an epigenetic fingerprint may improve the current diagnostic tools for a better clinical management of endometrial lesions.

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P &lt; 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P &lt; 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    <i>Amphidinium</i> spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds

    No full text
    Dinoflagellates make up the second largest marine group of marine unicellular eukaryotes in the world ocean and comprise both heterotrophic and autotrophic species, encompassing a wide genetic and chemical diversity. They produce a plethora of secondary metabolites that can be toxic to other species and are mainly used against predators and competing species. Dinoflagellates are indeed often responsible for harmful algal bloom, where their toxic secondary metabolites can accumulate along the food chain, leading to significant damages to the ecosystem and human health. Secondary metabolites from dinoflagellates have been widely investigated for potential biomedical applications and have revealed multiple antimicrobial, antifungal, and anticancer properties. Species from the genus Amphidinium seem to be particularly interesting for the production of medically relevant compounds. The present review aims at summarising current knowledge on the diversity and the pharmaceutical properties of secondary metabolites from the genus Amphidinium. Specifically, Amphidinium spp. produce a range of polyketides possessing cytotoxic activities such as amphidinolides, caribenolides, amphidinins, and amphidinols. Potent antimicrobial properties against antibiotic-resistant bacterial strains have been observed for several amphidinins. Amphidinols revealed instead strong activities against infectious fungi such as Candida albicans and Aspergillus fumigatus. Finally, compounds such as amphidinolides, isocaribenolide-I, and chlorohydrin 2 revealed potent cytotoxic activities against different cancer cell lines. Overall, the wide variety of antimicrobial, antifungal, and anticancer properties of secondary metabolites from Amphidinium spp. make this genus a highly suitable candidate for future medical applications, spanning from cancer drugs to antimicrobial products that are alternatives to currently available antibiotic and antimycotic products

    Antifungal Amphidinol 18 and Its 7-Sulfate Derivative from the Marine Dinoflagellate Amphidinium carterae

    No full text
    Two new polyketides of the amphidinol family, amphidinol 18 (wAM18, 1) and its corresponding 7-sulfate derivative (AM19, 2), have been isolated from the MeOH extract of the dinoflagellate Amphidinium carterae. Structure elucidation of the two polyoxygenated molecules has been accomplished by extensive use of spectroscopic and spectrometric techniques. AM18 exhibited antifungal activity against Candida albicans at 9 mu g/mL

    The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from Amphidinium carterae

    No full text
    Two new members of the amphidinol family, amphidinol A (1) and its 7-sulfate derivative amphidinol B (2), were isolated from a strain of Amphidinium carterae of Lake Fusaro, near Naples (Italy), and chemically identified by spectroscopic and spectrometric methods. Amphidinol A showed antifungal activity against Candida albicans (MIC = 19 µg/mL). Biosynthetic experiments with stable isotope-labelled acetate allowed defining the elongation process in 1. For the first time the use of glycolate as a starter unit in the polyketide biosynthesis of amphidinol metabolites was unambiguously demonstrated
    • …
    corecore