145 research outputs found

    Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules : A toolbox to provide multifunctional properties to target complex pathologies

    Get PDF
    Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive tech-niques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thor-oughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multi-functional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.Peer reviewe

    Ferromagnetism without flat bands in thin armchair nanoribbons

    Full text link
    Describing by a Hubbard type of model a thin armchair graphene ribbon in the armchair hexagon chain limit, one shows in exact terms, that even if the system does not have flat bands at all, at low concentration a mesoscopic sample can have ferromagnetic ground state, being metallic in the same time. The mechanism is connected to a common effect of correlations and confinement.Comment: 37 pages, 12 figures, in press at Eur. Phys. Jour.

    Spectral functions of the Falicov-Kimball model with electronic ferroelectricity

    Get PDF
    We calculate the angular resolved photoemission spectrum of the Falicov-Kimball model with electronic ferroelectricity where dd- and ff-electrons have different hoppings. In mix-valence regimes, the presence of strong scattering processes between dd-ff excitons and a hole, created by emission of an electron, leads to the formation of pseudospin polarons and novel electronic structures with bandwidth scaling with that of dd-ff excitons. Especially, in the two-dimensional case, we find that flat regions exist near the bottom of the quasiparticle band in a wide range of the dd- and ff-level energy difference.Comment: 5 pages, 5 figure

    DNA methylation epi-signature is associated with two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome

    Get PDF
    Background: Phelan-McDermid syndrome is characterized by a range of neurodevelopmental phenotypes with incomplete penetrance and variable expressivity. It is caused by a variable size and breakpoint microdeletions in the distal long arm of chromosome 22, referred to as 22q13.3 deletion syndrome, including the SHANK3 gene. Genetic defects in a growing number of neurodevelopmental genes have been shown to cause genome-wide disruptions in epigenomic profiles referred to as epi-signatures in affected individuals. Results: In this study we assessed genome-wide DNA methylation profiles in a cohort of 22 individuals with Phelan-McDermid syndrome, including 11 individuals with large (2 to 5.8 Mb) 22q13.3 deletions, 10 with small deletions (\u3c 1 Mb) or intragenic variants in SHANK3 and one mosaic case. We describe a novel genome-wide DNA methylation epi-signature in a subset of individuals with Phelan-McDermid syndrome. Conclusion: We identified the critical region including the BRD1 gene as responsible for the Phelan-McDermid syndrome epi-signature. Metabolomic profiles of individuals with the DNA methylation epi-signature showed significantly different metabolomic profiles indicating evidence of two molecularly and phenotypically distinct clinical subtypes of Phelan-McDermid syndrome

    A survey of task-oriented crowdsourcing

    Get PDF
    Since the advent of artificial intelligence, researchers have been trying to create machines that emulate human behaviour. Back in the 1960s however, Licklider (IRE Trans Hum Factors Electron 4-11, 1960) believed that machines and computers were just part of a scale in which computers were on one side and humans on the other (human computation). After almost a decade of active research into human computation and crowdsourcing, this paper presents a survey of crowdsourcing human computation systems, with the focus being on solving micro-tasks and complex tasks. An analysis of the current state of the art is performed from a technical standpoint, which includes a systematized description of the terminologies used by crowdsourcing platforms and the relationships between each term. Furthermore, the similarities between task-oriented crowdsourcing platforms are described and presented in a process diagram according to a proposed classification. Using this analysis as a stepping stone, this paper concludes with a discussion of challenges and possible future research directions.This work is part-funded by ERDF-European Regional Development Fund through the COMPETE Programme (Operational Programme for Competitiveness) and by National Funds through the FCT-Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within the Ph.D. Grant SFRH/BD/70302/2010 and by the Projects AAL4ALL (QREN11495), World Search (QREN 13852) and FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012). The authors also thank Jane Boardman for her assistance proof reading the document.info:eu-repo/semantics/publishedVersio

    Exact solution of the Falicov-Kimball model with dynamical mean-field theory

    Full text link
    The Falicov-Kimball model was introduced in 1969 as a statistical model for metal-insulator transitions; it includes itinerant and localized electrons that mutually interact with a local Coulomb interaction and is the simplest model of electron correlations. It can be solved exactly with dynamical mean-field theory in the limit of large spatial dimensions which provides an interesting benchmark for the physics of locally correlated systems. In this review, we develop the formalism for solving the Falicov-Kimball model from a path-integral perspective, and provide a number of expressions for single and two-particle properties. We examine many important theoretical results that show the absence of fermi-liquid features and provide a detailed description of the static and dynamic correlation functions and of transport properties. The parameter space is rich and one finds a variety of many-body features like metal-insulator transitions, classical valence fluctuating transitions, metamagnetic transitions, charge density wave order-disorder transitions, and phase separation. At the same time, a number of experimental systems have been discovered that show anomalies related to Falicov-Kimball physics [including YbInCu4, EuNi2(Si[1-x]Gex)2, NiI2 and TaxN].Comment: 51 pages, 40 figures, submitted to Reviews of Modern Physic

    Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study

    Get PDF
    BACKGROUND: Different organochlorines and lead (Pb) have been shown to have immunomodulating properties. Children are at greater risk for exposure to these environmental toxicants, but very little data exist on simultaneous exposures to these substances. METHODS: We investigated whether the organochlorine compounds (OC) dichlorodiphenylethylene (DDE), hexachlorobenzene (HCB), hexachlorocyclohexane (Îł-HCH), the sum of polychlorinated biphenyls (ÎŁPCBs) and Pb were associated with immune markers such as immunoglobulin (Ig) levels, white blood cell (WBC), counts of lymphocytes; eosinophils and their eosinophilic granula as well as IgE count on basophils. The investigation was part of a cross-sectional environmental study in Hesse, Germany. In 1995, exposure to OC and Pb were determined, questionnaire data collected and immune markers quantified in 331 children. For the analyses, exposure (OC and Pb) concentrations were grouped in quartiles (Îł-HCH into tertiles). Using linear regression, controlling for age, gender, passive smoking, serum lipids, and infections in the previous 12 months, we assessed the association between exposures and immune markers. Adjusted geometric means are provided for the different exposure levels. RESULTS: Geometric means were: DDE 0.32 ÎĽg/L, ÎŁPCBs 0.50 ÎĽg/L, HCB 0.22 ÎĽg/L, Îł-HCH 0.02 ÎĽg/L and Pb 26.8 ÎĽg/L. The ÎŁPCBs was significantly associated with increased IgM levels, whereas HCB was inversely related to IgM. There was a higher number of NK cells (CD56+) with increased Îł-HCH concentrations. At higher lead concentrations we saw increased IgE levels. DDE showed the most associations with significant increases in WBC count, in IgE count on basophils, IgE, IgG, and IgA levels. DDE was also found to significantly decrease eosinophilic granula content. CONCLUSION: Low-level exposures to OC and lead (Pb) in children may have immunomodulating effects. The increased IgE levels, IgE count on basophils, and the reduction of eosinophilic granula at higher DDE concentrations showed a most consistent pattern, which could be of clinical importance in the etiology of allergic diseases

    SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras

    Get PDF
    SHANK3, a synaptic scaffold protein and actin regulator, is widely expressed outside of the central nervous system with predominantly unknown function. Solving the structure of the SHANK3 N-terminal region revealed that the SPN domain is an unexpected Ras-association domain with high affinity for GTP-bound Ras and Rap G-proteins. The role of Rap1 in integrin activation is well established but the mechanisms to antagonize it remain largely unknown. Here, we show that SHANK1 and SHANK3 act as integrin activation inhibitors by sequestering active Rap1 and R-Ras via the SPN domain and thus limiting their bioavailability at the plasma membrane. Consistently, SHANK3 silencing triggers increased plasma membrane Rap1 activity, cell spreading, migration and invasion. Autism-related mutations within the SHANK3 SPN domain (R12C and L68P) disrupt G-protein interaction and fail to counteract integrin activation along the Rap1-RIAM-talin axis in cancer cells and neurons. Altogether, we establish SHANKs as critical regulators of G-protein signalling and integrin-dependent processes
    • …
    corecore