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Abstract: Since the advent of artificial intelligence, researchers have been trying to create ma-

chines that emulate human behaviour. Back in the 1960s however, Licklider (1960) believed that 

machines and computers were just part of a scale in which computers were on one side and hu-

mans on the other (human computation). After almost a decade of active research into human 

computation and crowdsourcing, this paper presents a survey of crowdsourcing human computa-

tion systems, with the focus being on solving micro-tasks and complex tasks. An analysis of the 

current state of the art is performed from a technical standpoint, which includes a systematized 

description of the terminologies used by crowdsourcing platforms and the relationships between 

each term. Furthermore, the similarities between task-oriented crowdsourcing platforms are de-

scribed and presented in a process diagram according to a proposed classification. Using this anal-

ysis as a stepping stone, this paper concludes with a discussion of challenges and possible future 

research directions. 

Crowdsourcing, Human Computation, Survey, Complex Tasks, Micro-task 
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Introduction 

Since the advent of artificial intelligence, researchers have been trying to create 

machines that emulate human behaviour. This has led to multiple branches of arti-

ficial intelligence such as multi-agent systems, reasoning and negotiation. Back in 

the 1960s however, Licklider (1960) believed that machines and computers were 

just part of a scale which weights humans on one side, and computers on the oth-

er. His vision was that  computers and humans should work together performing 

complementary roles (Licklider 1960; Quinn and Bederson 2011). 

It was only recently that relevant research emerged and brought humans 

into computer affairs. The early contributors to this retake on Lickliders’ vision 

might as well be the social Web and the harnessing of collective intelligence 

(Gruber 2008). These proved that humans have great complementary abilities that 

are relative to computers, and that they can act as guided computational units. 

As a part of collective intelligence (Quinn and Bederson 2011), human computa-

tion (Von Ahn 2009) re-emerged as a relevant research field. Shortly after, the 

term crowdsourcing was coined (Howe 2006), leading to yet another field of re-

search that is highly connected to human computation. 

After almost one decade of active research into human computation and 

crowdsourcing, several approaches and business models based on crowdsourcing 

have emerged, managing and distributing work to the crowd (Doan et al. 2011; 

Quinn and Bederson 2011; Yuen et al. 2011a). In this sense, crowdsourcing (cur-

rently the most popularized term) can be seen from two different perspectives: a 

business domain-specific perspective, and a technical domain-independent per-

spective.  

From a business perspective, there is great interest in accomplishing spe-

cific business tasks efficiently and effectively in terms of time and monetary 

costs. Studies in this context tend to focus on the domain-specific details of the 

task, giving special concern to user motivation and quality-control aspects.  

A technical and domain-independent perspective, on the other hand, puts 

the emphasis on methods, techniques and frameworks for solving problems (in 

general) that machines alone aren’t yet able to solve (Von Ahn 2009; Quinn and 

Bederson 2011). In some cases, problem-solving can be achieved by replacing 

machines with humans in certain computation steps where humans usually per-
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form better (human computation). In this context, the focus is on the creation and 

deployment of mechanisms that efficiently and effectively facilitate the 

crowdsourcing and human computation process. 

So far, most work on providing a survey and classification of crowdsourc-

ing systems (Doan et al. 2011; Quinn and Bederson 2011; Yuen et al. 2011a) 

adopted a business and user perspective.  

This paper presents a survey of crowdsourcing human computation sys-

tems from a technical domain-independent perspective, with a focus on solving 

micro-tasks and complex tasks. First, a discussion of the concepts collective intel-

ligence, human computation and crowdsourcing is presented, followed by their 

application and role in several different domains. Afterwards, a detailed analysis 

and systematization of several micro-task and complex task crowdsourcing sys-

tems is presented, along with their comparison, terminologies and process. This 

analysis is given according to scientific publications and the empirical analysis of 

the online system, if available. An ontology that allows the classification of such 

systems according to different technical aspects is proposed. Finally, current chal-

lenges and possible future approaches are discussed.  

Human Computation and the Wisdom of Crowds 

Humans are innately social and the intrinsic aspects of human cooperation have 

been the subject of great research efforts (Porter 2008). We, humans, not only 

tend to form a clustered structure of relationships (social circle), but also extract 

individual benefits from them (Levine and Kurzban 2006). Social circles have a 

great impact on our lives, influencing our ideas and behaviour (Konstas et al. 

2009). Not so long ago, the information that a person had access to was mostly the 

information flowing inside his social circle. Nowadays, our social circle also acts 

as a filter for all the vast amounts of information and choices delivered to us every 

day (Ma et al. 2011) by other means (e.g. social media, internet). 

The emergence of the social web has brought new powerful web applica-

tions that connect people on a global scale, and allow them to reap the benefits of 

social life from online virtual environments in a global scale. Along with their 

huge popularity, online social networks allow the retrieval of significant amounts 

of important social data, which can be used to promote social benefits (Levine and 

Kurzban 2006).  
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One of the most straightforward benefits we extract from society comes 

from asking our friends for an opinion or advice (Ma et al. 2011). It is possible to 

apply a similar mechanism to online social networks by automatically filtering 

data, and providing the user with relevant and personalized results according to 

the opinions coming from his online social circle. The difference is that, unlike 

humans alone, the introduction of machines allows that procedure to be performed 

for millions of items, covering a wide social circle. 

Online social networks also destroy geographical barriers, thus promoting 

the combination of behaviours and ideas on a global scale (Porter 2008). This 

combination is often referred to as collective intelligence (Luo et al. 2009). 

An interesting example of the importance of collective intelligence is what 

Porter (2008) regards as the Amazon Effect. To explain the Amazon Effect, he 

describes a usability study where people were asked to buy a product at a certain 

online store. A lot of people wanted to go to Amazon first, and when they were 

asked why, they just answered that they would like to do some research on the 

product, even if they were not buying it on Amazon. 

Brabham (2008a) follows Surowieckis’ (2004) view on the wisdom of 

crowds (often referred to in the context of the Web as collective intelligence), 

which states that it emerges from aggregating individual solutions, instead of av-

eraging them (as in the case of Amazon’s review system). This view is particular-

ly relevant in the context of problem solving, where aggregating individual solu-

tions often leads to a better solution than any of the best originally proposed indi-

vidual solutions. Following this view, Brabham argues that crowdsourcing is a 

model achieved through the Web that is “capable of aggregating talent, leveraging 

ingenuity while reducing costs and time formerly needed to solve problems”. 

Crowdsourcing is a term popularized  by Howe (2008; 2006) that emerged in the 

context of a paradigm shift in business models. This shift originated from compa-

nies that started to provide outsourcing services relying on anonymous communi-

ties or crowds throughout the Web (e.g. iStockPhoto
2
, InnoCentive

3
 and Ama-

zon’s Mechanical Turk
4
). By 2006, these communities were growing into incredi-

                                                 

2
 http://www.istockphoto.com 

3
 http://www.innocentive.com 

4
 https://www.mturk.com 
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ble valuable work forces capable of performing several specific tasks in exchange 

for small monetary rewards.  

Since then, several similar definitions for the term crowdsourcing have 

been given. According to Howe (2008), “crowdsourcing is the act of taking a task 

traditionally performed by a designated agent (such as an employee or a contrac-

tor) and outsourcing it by making an open call to an undefined but large group of 

people”. Doan et al. (2011) define crowdsourcing as a system that “enlists a 

crowd of humans to help solve a problem defined by the system owners, and if in 

doing so, it addresses” the challenges of recruiting and retaining users, defining 

which contributions can be made by users, combining these contributions and 

evaluating user performance.  

Quinn and Bederson (2011) not only provide a definition for crowdsourc-

ing, but also compare it to terms such as human computation, social computing 

and collective intelligence. They aggregate several definitions found in literature 

and state that crowdsourcing is a form of collective intelligence that overlaps hu-

man computation.  

The term human computation dates back to the early years of artificial in-

telligence, in the 1960s, where it was envisioned that computers and humans 

should work together performing complementary roles (Licklider 1960; Quinn 

and Bederson 2011). Still, the vision of human-computer collaboration only start-

ed to be properly explored after 2005, the year von Ahn published his doctoral 

thesis entitled Human Computation (Von Ahn 2009). Von Ahn proposes the use 

of human algorithm games to harness the distributed processing power of humans 

to perform specific tasks. In accordance, human computation can be defined as a 

computational process that involves humans and their cooperation in order to 

solve problems that computers cannot yet solve (Quinn and Bederson 2011). This 

definition is complemented by stating that “human computation does not encom-

pass online discussions or creative projects where the initiative and flow of activi-

ty are directed primarily by the participants’ inspiration, as opposed to a prede-

termined plan designed to solve a computational problem”. 

Quinn and Bederson (2011) argue that while human computation requires 

humans to act as managed units that merely perform a computation, crowdsourc-

ing requires several humans to cooperate in a process by performing a computa-

tion or a creative task that is not always managed by computers (e.g. Wikipedia).  
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Crowds have an important role in human computation. Besides providing 

good amounts of computational power, applicable in tasks that machines can bare-

ly solve with efficiency and efficacy, they can also be used for redundancy. 

With the evolution and absorption of crowdsourcing and human computa-

tion into market-places and businesses, it can be observed that while human com-

putation (HC) is a term that is mostly used by the scientific community, 

crowdsourcing (CS) is a term highly employed in the business world. 

Throughout this paper, the terms micro-task, task and complex task will be 

heavily employed. In order to reduce ambiguity fig. 1 defines the relationships 

between each concept, considered in the context of this paper. 

Two types of tasks are considered: micro-tasks and complex tasks. While 

micro-tasks are atomic computation operations, complex tasks are (possibly or-

dered) sets of micro-tasks (e.g. workflows of micro-tasks) with a specific purpose.  

Task

Micro-Task Complex Task

formedBy
1 or *

 

Fig. 1 - Relationships between the concepts Micro-Task, Task and Complex Task. Both Mi-

cro-Task and Complex Task are sub-concepts of Task. 

Role and Application Domains 

Several experiments in different domains have shown that CS and HC have great 

potential for solving large scale problems that are often difficult for computers to 

solve automatically, on their own (Von Ahn 2009). These problems usually re-

quire a degree of creativity or just common sense plus some background 

knowledge (Chklovski 2003; Singh et al. 2002). The interpretation and recogni-

tion of images and natural language are two examples of these kinds of problems. 

One of the applications of CS lies in harnessing geographical information. Recent-

ly, the production of geo-referenced data, maps, and atlases has moved from map-

ping agencies and corporations to non-expert users (Goodchild and Glennon 

2010). Some of the services that allow this include Flickr, Google’s MyMaps, 

OpenStreetMap, and Wikimapia. Following this trend, Goodchild and Glennon 

(2010) discuss the applications of CS to the harnessing of geographical infor-
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mation for disaster response. They argue about the importance of quality in har-

nessing geographical information and present an analysis of non-expert user gen-

erated geographical information from occurrences of wildfires in Santa Barbara, 

California. Although further research is needed, there is great potential for quickly 

generating and spreading disaster-related information through a CS system. 

The potential and importance of CS in harnessing geographical infor-

mation has also been successfully noted and put into practice by Safecast
5
, a pro-

ject that emerged one week after the earthquake that led to the Fukushima Japa-

nese nuclear accident. Safecast is a “global sensor network for collecting and shar-

ing radiation measurements to empower people with data about their environ-

ments”. In order to collect data, different types of radiation sensors are distributed 

through volunteers that later use them to collect geo-referenced radiation meas-

urements during their travels. The results are collected and published by Safecast, 

which provides free access to the data. 

Several CS-based businesses have emerged since the advent of CS plat-

forms. While some maintain their own community of workers (e.g. MicroWork-

ers
6
, ShortTask

7
), others interact with one or more CS platforms (e.g. Crowd-

Flower
8
) offering their services in designing and managing projects and tasks, and 

obtaining reliable results. Brabham (2008a) discusses several successful applica-

tions of CS as business models, which include Threadless, InnoCentive, and 

iStockPhoto. Threadless crowdsources the design process of t-shirts by promoting 

online competition. InnoCentive has a different focus, as it crowdsources the re-

search and development of scientific problems as challenges. The last, iStockPho-

to, sells photographs, animation, and video clips produced by its crowd of artists. 

Interestingly, surveys of the iStockPhoto crowd show that the main motivations 

behind their time and effort are not only monetary but also enjoyment and the de-

velopment of individual skills (Brabham 2008b). 

In 2010, Dawson and Alexandrov published a diagram of the landscape of 

CS
9
. They distinguish CS systems through thirteen categories, enumerating sever-

                                                 

5
 http://blog.safecast.org/ 

6
 https://microworkers.com 

7
 http://www.shorttask.com 

8
 http://crowdflower.com 

9
 http://crowdsourcingresults.com/competition-platforms/crowdsourcing-landscape-discussion 
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al domains where CS has been applied. The presented categories are: crowdsourc-

ing aggregators (e.g. CrowdFlower), content markets (e.g. iStockPhoto), predic-

tion markets (e.g. Crowdcast), question answering (e.g. Yahoo! Answers), innova-

tion prizes (e.g. XPrize), service marketplaces (e.g. Freelancer), distributed inno-

vation (e.g. InnoCentive), crowdfunding (e.g. KickStarter), competition platforms 

(e.g. 99 Designs), content-rating (e.g. Delicious), idea platforms (e.g. IdeaScale), 

data sharing (e.g. Dead Cellzones), reference content (e.g. Wikipedia), cycle shar-

ing (e.g. SETI@Home) and micro-tasks (e.g. Mechanical Turk and ShortTask). 

Among the application domains featured by these CS systems are business ideas, 

3D and graphic design, data analysis, research, tagging, translation, writing and 

editing, reviewing and software development.  

From all the CS systems and common types of CS tasks enumerated by 

Dawson and Alexandrov, only some qualify as HC systems. This is the case for 

CS systems under the micro-tasks category. However, although CS systems like 

Mechanical Turk and ShortTask provide a platform for building any type of tasks, 

some specific types of tasks have become widely popular for being particularly 

adequate for micro-task representation, and for being easily accepted by workers. 

These specific types of tasks are often (as presented in CloudCrowd
10

) writing, 

editing, categorization, searching, data entry and translation tasks. 

In this sense, most CS micro-task systems feature the creation of task tem-

plates that can be used to request multiple similar tasks. These systems often pro-

vide a predefined set of templates for commonly requested types of tasks. Some of 

the predefined templates provided by Mechanical Turk and ShortTask include: 

 Categorization, classification; 

 Data verification (e.g. provide correct spelling) 

 Data extraction (e.g. finding a website address); 

 Moderation and tagging of multimedia content (e.g. tagging images or vid-

eos with adult content); 

 Transcription from multimedia content (e.g. audio, video and images); 

 Sentiment analysis and surveys; 

 Search relevance (e.g. evaluate relevance of search results). 

 

                                                 

10
 http://www.cloudcrowd.com 
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Around these CS systems that manage their own community of workers, CS-

oriented businesses have started to emerge. Although these businesses tend to 

provide services with a tendency towards solving complex tasks, they still share 

many similarities with common CS micro-task system templates. For instance, 

MobileWorks
11

, a CS-oriented company, groups its services into categories such 

as digitalization of documents, categorization and classification, researching, and 

harnessing feedback (e.g. through surveys). 

Some of these application domains can be easily modelled and managed 

with single and independent CS micro-tasks. Recently, however, a special interest 

in employing CS towards solving more complex tasks has emerged (Ahmad et al. 

2011; Kittur et al. 2011; Kulkarni et al. 2011; Little et al. 2010; Luz et al. 2012; 

Sarasua et al. 2012). This interest has led to several approaches being built upon 

workflows of micro-tasks. The modelling of such workflows allows the CS of a 

new kind of more complex tasks (e.g. selecting and buying a video camera). 

Quality Control and Evaluation 

Over the years, several researchers have dedicated their efforts to evaluating the 

quality of the results obtained through crowdsourcing tasks (Brabham 2008b; 

Goodchild and Glennon 2010; Kittur et al. 2008; Paolacci et al. 2010; Willett et 

al. 2012). 

Kittur et al. (2008) present an analysis of crowdsourcing user evaluations 

using Mechanical Turk. These user evaluations include “surveys, usability tests, 

rapid prototyping, cognitive walkthroughs, quantitative ratings, and performance 

measures”. By performing two different experiments they concluded that although 

promising, special care is required when formulating user evaluation micro-tasks. 

In the first experiment, workers were asked to rate the quality of a Wikipedia arti-

cle according to questions formulated from the Wikipedia article guidelines. Re-

sults showed that nearly 48.6% of the answers were invalid and 30.5% were given 

in less than one minute. In the second experiment, questions that guided the work-

er through the article evaluation process (e.g. how many references and images 

does the article have?) were added to the micro-task. This resulted in a significant 

                                                 

11
 https://www.mobileworks.com 
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reduction of invalid responses (around 2.5%) and in an increase of the micro-task 

execution time. 

Willett et al. (2012) discuss the quality of results in social data analysis 

tasks. This kind of task focuses on harnessing explanations and interpretations of 

data, thus requiring diverse justified analytical answers. The CS process (see fig. 

2) starts after the selection of a set of charts by an analyst. An analysis micro-task 

is then created, in which CS workers provide explanations for each chart. The 

analysis is followed by a rating micro-task, where workers assess the quality of 

the previously submitted explanations according to relevance, clarity and plausi-

bility. The results of this task aid the analyst in filtering low quality explanations. 

CS

Chart 
Selection

Request Worker 
Explanations

Request Worker Ratings 
to Explanations

Get Final 
Results

 

Fig. 2 - The CS process of data analysis proposed by Willet et al. (2012). 

 

Implementing this workflow of micro-tasks, Willett et al. (2012) describe seven 

strategies to improve the quality of explanations, tackling issues like irrelevant, 

unclear and speculative explanations,  inattention to chart detail, and lack of di-

versity. These strategies are to i) use feature-oriented prompts, ii) provide good 

examples, iii) include reference gathering subtasks, iv) include chart reading sub-

tasks, v) include annotation subtasks, vi) use pre-annotated charts, and vii) elicit 

explanations iteratively. 

Experiments by Willett et al. show that around 63% of the given explana-

tions are good, and that the described strategies significantly improve the quality 

of explanations. 

Although quality evaluation and control is often a highly domain-specific 

process, Ipeirotis et al. propose an algorithm that evaluates the quality of workers 

for general tasks in Mechanical Turk and attributes a score to each worker (Ipeiro-

tis et al. 2010). Following the assumption that biased workers can still provide 

relevant (although often considered wrong) answers, the algorithm tries to distin-

guish between error and bias in worker answers.   
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Systematization of Task-Oriented Systems 

This section presents an analysis and systematization of task-oriented CS and HC 

systems. A brief description of all the entities present in these systems is given, 

along with the relationships between them. Afterwards, an abstraction of task-

oriented CS and HC processes is presented. This abstraction encompasses most 

systems and includes complex task-oriented systems based on task workflows. 

Finally, a description of each of the analysed CS task-oriented systems is provid-

ed. 

Entities and Relationships 

Throughout the following analysis, several terms will be employed according to 

different terminologies. These terminologies refer to the entities that are present in 

the CS and HC process. For this description and systematization the following 

terms and entities are considered: 

 Worker – a person that solves tasks; 

 Community – a set of workers; 

 Requester – an entity that submits jobs; 

 Job – a complex task or workflow of tasks; 

 Task – the specification of a task or micro-task, which may be instantiated 

a multiple number of times; 

 Unit – an instance of a task; 

 Reference Unit – an instance of a task with a known answer; 

 Assignment – an assignment of a unit to a single worker; 

 Answer – the given solution of a worker to a specific assignment; 

 Qualification – a validated worker skill or expertise in a specific domain; 

 Credibility – a measurement of worker performance in completed assign-

ments; 

 Workflow – the continuity of work by passing the output of one task as the 

input of another. 

 

Regardless of their application domain, several subtypes of tasks were identified: 

 Partition Task – a task that consists in the partitioning of a complex task 

into a workflow of simpler tasks; 
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 Aggregation Task – a task that consists in the aggregation of multiple an-

swers given to another task or job; 

 Qualification Task – a task that must be successfully completed in order to 

obtain a qualification; 

 Grading Task – a task that consists of assessing the results of qualification 

tasks and usually given to highly credible and qualified workers. 

 

The relationships between these entities are represented in the relational diagram 

in fig. 3. Notice that this diagram represents a generalization and a conceptual 

model of the analysed systems. It does not take into account implementation de-

tails. 

Job

Task

1

1..*

1

1..*

Unit

Reference Unit

Worker

Assignment

Answer

Community

Workflow

Qualification

Worker Qualification

Qualification Task

Partition Task

Aggregation Task

Grading Task

Machine Task

1

1..*

1 *

1

*

*
*

* *

1 *

0..1

*

1

1..*
*

*

 

Fig. 3 - Entity relationship diagram of a common (complex) task CS and HC system. 

The Process 

There are three active entities in a task-oriented CS and HC process: the requester, 

the worker, and the system itself. Each of these entities has a different role in the 

process. For instance, the worker only has to select a task, solve it, and later re-

ceive (or not) a reward according to his performance. The requester and system 

flow of actions, however, is more complex. In fig. 4, the whole process is depicted 

for each of the three active entities. Notice that when solving complex human 

computation tasks, current systems focus on managing workflows of simple tasks. 
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The overall process has three phases: the design phase, the online phase, and the 

conclusion phase. For each of these phases, the job can be found in different 

states. In the case of the design phase, the job is always in the “not ordered” state. 

During the online phase, the job may be either “running” or “paused”. Finally, 

during the conclusion phase, the job reaches its’ final state, which can be either 

“finished” or “cancelled”.  

The design phase is an exclusive interaction between the requester and the 

system, where the requester must configure the job, design each task, and build 

the task workflow. 

In the online phase the job is set to run. It is during this phase that the 

worker must act and solve the task. The requester, on the other hand, can pause 

the job to modify its configuration and change parts of the workflow (as in the 

crash and rerun strategy), resuming its execution afterwards. 

Just like the job, each worker task in the workflow has an associated state. Before 

it is reached, the worker task is set as “not ordered”. When its execution starts, the 

worker task is set to “running” with the possibility of being “paused”. Finally, it 

can be either “cancelled” or “finished”. 

Five main steps are performed during the execution of a worker task: (i) 

task distribution and worker selection, (ii) assignment to workers, (iii) assignment 

assessment, and optionally, (iv) result aggregation and (v) worker rewarding. The 

first three steps are executed in a loop, where the task may be re-assigned to a 

specific group of workers in the same community. Also, for each task, multiple 

assignments can be given to several workers, each requiring an assessment. When 

all the required assignments are solved, workers can be optionally rewarded au-

tomatically according to the results in the assignment assessment. All assignments 

of the same task may also be aggregated in order to provide a final answer. 

For each task in the workflow, the previously described process is fol-

lowed. More specifically, these tasks can run either concurrently, for parallel tasks 

in the workflow, or sequentially. If the output of two parallel tasks is required as 

the input of the following task, the system must synchronize and wait for both 

parallel tasks to be completed before advancing to the next task. 

After the workflow is finished, the conclusion phase starts, in which the 

requester can review and reward workers according to their performance. The re-

sults of the execution of the workflow are also made available to the requester. 
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System

Worker Parallel Tasks (Loop)

Requester

Create and 
Configure Job

Order Job Visualize and Manage Job

Distribute Task 
and Filter 
Workers

Get Final Results

Execute Machine Task Aggregate 
Results

Reward Workers

Get Reward

Following 
Seq. 

Tasks?

yes; then for each parallel task… (loop)

no

Reward Workers
Job Finished 
or Canceled

no

yes

Not Ordered Running, Paused Cancelled, Finished

Distribute Task 
through 

Machines

Worker or 
Machine?

worker

machine

Execute Worker Task (Loop)

Select and 
Accept Task

Solve 
Assignment

Assess 
Assignment

Create 
Assignment

 

Fig. 4 - Process diagram of a common (complex) task CS and HC system. Dashed steps may, or may not, exist in different systems.



15 

Systems and Platforms 

The following analysis contains CS systems that overlap with HC. A special focus 

is given to the CS of complex tasks. For some of the systems, an empirical study 

was performed since there are no available publications describing them. In other 

cases, the system implementation was not available, leading to a study based only 

on related publications. 

Mechanical Turk 

Mechanical Turk is an online labour market and pioneer of the CS platforms that 

specialize in micro-tasks. Each requester (employer) can create HITs (Human In-

telligence Tasks) or units of work, which represent multiple micro-tasks that will 

be executed by workers (employees) in exchange for a small monetary reward 

(Paolacci et al. 2010).  

Requesters can specify several qualification requirements for workers. 

These requirements often contain test forms that workers must complete in order 

to assess their qualifications. Additionally, profile-related requirements can be 

enforced such as the country of residence and accuracy in previously solved tasks. 

In order to use Mechanical Turks’ work force, a requester must create a new pro-

ject that will wrap all the data regarding the task. A project or job represents a 

HIT template, containing common parameters (e.g. name, description, keywords, 

rewards per assignment, assignments per hit, allotted time per assignment) and the 

layout design in HTML. A project can be created from scratch or from a pre-

defined project template such as the ones present in fig. 5. 

Afterwards, a set of HITs can be submitted to Mechanical Turk using the 

created project. Along with this request, a CSV (Comma Separated Values) file 

must be uploaded. Each row of the CSV represents a HIT and contains the re-

quired data to present the HIT using the layout design defined in the project. Fi-

nally, the requester can approve (the reward is given) or disapprove (the reward is 

not given) the results of worker assignments. 

Mechanical Turk does not include an aggregation mechanism. According 

to the project configuration, the assignment results given directly to the requester 

may contain multiple answers to each HIT. 
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As a worker, several assignments for the same HIT can be accepted. If a specific 

qualification is required for the HIT, the corresponding qualification test must be 

passed first. 

 

Fig. 5 - Pre-defined project templates in Mechanical Turk. 

CrowdFlower 

CrowdFlower is a micro-task CS platform that distributes micro-tasks over several 

CS channels such as Mechanical Turk and Crowd Guru. Currently, more than fifty 

channels are supported. 

A requester starts by submitting a job to CrowdFlower. A job is a template 

and an aggregation of multiple micro-tasks, known as units. 

Several workers can work on the same unit. The result of this work for a 

single unit is called judgement. In this sense, one unit can have multiple judge-

ments given by multiple workers (even one worker can give two or more judge-

ments to the same unit). 

Some of these units can be gold units. Gold units come with a reference 

judgement (correct answer) and are used to validate the work done by workers. If 

a worker gives a wrong judgement to a gold unit, their confidence degree will de-

crease until their judgements are not accounted for in the aggregated job results. 

Besides the specification of common parameters (e.g. keywords, judgements per 

worker, judgements per IP, allowed countries, judgements per unit), a Crowd-

Flower job contains the layout design defined in CML (CrowdFlower Markup 

Language). The CML is a language that provides an abstraction over HTML ob-

jects and allows interaction with the unit data (see fig. 6), which is also uploaded 

to CrowdFlower through a CSV file.  
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After supplying all the required data (units, gold units, CML form, and 

other configuration parameters) the requester can order judgements. In this order, 

one or more distribution channels can be selected (e.g. Mechanical Turk, Crowd 

Guru, SurveyHunt, Earn The Most). 

When the job is finished, a full report is given. Additionally, aggregated, 

source, gold unit and worker reports are supplied in CSV format. The aggregation 

mechanism of CrowdFlower is based on a majority voting scheme that may ex-

clude judgements according to the supplied gold units. 

A worker participates in a job by giving judgements over sets of units pre-

sented on a single page. If allowed, a single worker can submit as many judge-

ments as units. Taking into account the existence of gold units, this amount may 

even exceed the amount of units. 

 

Fig. 6 - CML graphical interface editor in CrowdFlower. 

ShortTask 

ShortTask is an online labour market similar to Mechanical Turk. Consequently, a 

requester can create a task template or job, which can be used to order multiple 

units. These tasks will then be assigned to workers. 

Although the terms task and assignment are used, their application is not 

coherent. On some pages, task is equivalent to the term HIT; on others, it is 

equivalent to the term Project. Furthermore, even though there is a parameter for 

selecting the amount of assignments in the task template, requesting multiple an-

swers for one task when ordering was not possible while experimenting with 

ShortTask. 
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MicroWorkers 

MicroWorkers
12

 is a CS platform that focuses solely on the distribution of a mi-

cro-task amongst multiple workers. Unlike in Mechanical Turk and CrowdFlower, 

the process of building the job is significantly less structured and simpler. 

Instead of an interface for solving tasks structured with a markup language, the 

worker is given a set of instructions in natural language. These instructions are 

fixed for each job, meaning that submission will result in multiple workers per-

forming the same task. 

Given these limitations, jobs in MicroWorkers mostly involve work such 

as filling surveys, searching, rating, clicking, bookmarking, commenting, down-

loading, and installing applications. These are often associated with forums and 

websites such as Google, YouTube, Facebook and Twitter. 

Probably due to the nature of its jobs, MicroWorkers does not implement 

any specific worker selection mechanism besides the possibility of targeting spe-

cific countries. Also, no automatic worker assessment is performed. Requesters 

may instead ask for the submission of proof regarding the task completion.  

CloudCrowd 

CloudCrowd is a CS platform originally implemented as a Facebook application. 

Unlike the previously described platforms, users can only register as workers.  

Comparatively, CloudCrowd is more selective regarding workers and their exper-

tise. In order to work on projects, workers need to get credentials (see fig. 7). 

These credentials are given after successfully solving specific tests with multiple 

levels of difficulty. Additionally, a credibility score is given to the worker. The 

credibility score value can increase or decrease according to the worker creden-

tials and work feedback (e.g. incorrect answers). 

In order to assess the credibility of workers, CloudCrowd uses check tasks. 

Check tasks are tasks with known answers, similar to gold units in CrowdFlower. 

Workers can browse a list of projects and credentials, grouped by the fol-

lowing types: writing, editing, categorization, research, data entry, translation, and 

other. For each project, the required credibility and credentials are presented, 

                                                 

12
 https://microworkers.com 
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along with the monetary reward and availability. The availability represents the 

amount of tasks available to be solved in the project. 

From the analysis of the CloudCrowd worker interface, it is unknown if 

the same task is given to multiple workers or if there is any aggregation mecha-

nism available to requesters. 

 

Fig. 7 - Writing credential tests in CloudCrowd. 

TurKit 

Mechanical Turk focuses on independent tasks that can be executed in parallel. 

However, it does not support the creation of workflows of dependent tasks. TurKit 

is an API, built on top of Mechanical Turk, for running iterative tasks that pro-

vides an environment for the creation of workflows that connect multiple depend-

ent tasks (Little et al. 2010).  

Using the crash and rerun model, it provides an abstraction over the speci-

ficities and synchronization issues of Mechanical Turk, allowing the developer to 

focus on imperative ordinary function calls. 

The crash and rerun model follows the premise that it is cheap to rerun an 

entire program up to the point where it crashed, as long as it runs locally. For re-

mote and costly operations (e.g. HIT requests) the results must be stored in a da-

tabase so that they will be accessible in future reruns. 

The TurKit API is implemented in Java and allows the implementation of 

Mechanical Turk workflows in a JavaScript crash and rerun environment. This 

environment features a set of function directives for an easy and incremental im-

plementation of scripts. 
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The TurKit provides a development environment that is available both as a 

stand-alone application and as a web application. The web application runs on 

Google App Engine. 

Turkomatic 

Turkomatic follows a divide-and-conquer approach to plan work featuring micro-

task workflows partially designed by workers. It works over Mechanical Turk and 

is defined as “a crowdsourcing interface that consults the crowd to design and 

execute workflows based on user requests” (Kulkarni et al. 2011). 

Workers start by dividing the requested task into subtasks that will be 

solved by other workers. This process can be iterative, generating a tree of sub-

tasks. The final results are later combined by workers into an adequate solution. 

Turkomatic allows the requester to manage the generated workflow and its 

execution through a visual workflow editor. 

CrowdForge 

CrowdForge is a general purpose framework for distributed processing that pro-

vides a scaffolding for complex human computation tasks (Kittur et al. 2011).The 

approach features a set of task coordination strategies that allow multi-level and 

dynamic partitioning of tasks, the specification of task workflows, quality control 

tasks and aggregation of results. 

Finding inspiration in Google’s Map Reduce framework, CrowdForge de-

fines three types of subtasks: (i) partition tasks, (ii) map tasks and (iii) reduce 

tasks. Partition tasks divide a larger task into smaller subtasks. In map tasks, one 

or more workers process a task. Finally, in reduce tasks the processing results of 

multiple workers are merged into a single output. 

The CrowdForge prototype presented in (Kittur et al. 2011) consists in a 

web interface allowing the design of complex tasks, along with a backend server 

that interacts with Mechanical Turk. The system manages a workflow of Mechan-

ical Turk HIT templates, which can represent partitions maps or reduce tasks. 

CrowdWeaver 

TurKit, CrowdForge and Jabberwocky provide an environment for the design and 

execution of complex CS tasks through structured languages and non-visual rep-
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resentations. With the current trend on micro-task workflows, work on their man-

agement and visualization has started to emerge. Kittur et al. (2012) state that one 

of the major issues faced by employers working with crowds lies in the complexi-

ty of linking tasks and forming workflows. In this sense, they identify several 

challenges in visually managing CS workflows and present a system for visualiza-

tion and management of complex tasks, entitled CrowdWeaver. 

CrowdWeaver works on top of CrowdFlower and features the creation and 

monitoring of task workflows, the management and reuse of templates with hu-

man and machine tasks, the tracking and notification of crowd factors such as 

price and quality, and support for real-time experimentation. The interface pro-

vides a mental representation of the task workflow, which can be saved and re-

used in further instantiations of the workflow. 

Several machine tasks, which mainly manipulate input and output, are 

supported. These include divide, concatenate, pair, and permute. Additionally, 

custom machine tasks are allowed. 

Jabberwocky 

Similarly, Jabberwocky (Ahmad et al. 2011) also employs the MapReduce ap-

proach in a framework featuring a high-level abstraction task modelling language. 

It allows modelling complex tasks and workflows in which the advantages of mul-

tiple worker communities can be harnessed. These communities can be local or 

found in social networks and other CS systems. In the case of local communities, 

workers can be identified during the CS process. For social network communities, 

expertise data may be extracted from the social network APIs. 

Jabberwocky is formed by three layers: the (i) base layer is called Dor-

mouse, followed by the (ii) ManReduce layer, with the (iii) Dog layer on top. The 

Dormouse layer provides an abstraction over human (crowd workers) and ma-

chine computational units. Unlike other CS frameworks such as Mechanical Turk 

and CrowdFlower, each computational unit registered under Dormouse can be 

uniquely identified during workflow executions. Besides featuring its own worker 

community, Dormouse can crowdsource tasks to external CS platforms. 

The ManReduce layer is a programming framework, written in Ruby, re-

sponsible for facilitating complex data processing tasks in Dormouse. It features 

map and reduce steps which can be computed by either humans or machines. 
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The top layer, called Dog, represents an abstraction scripting language for 

modelling tasks. Dog works over the low-level ManReduce framework and focus-

es on reusability, maintainability and ease-of-use. 

Comparative Analysis 

While featuring the integration of a wide range of CS platforms, CrowdFlower 

also features the CML, an abstraction language for building task graphical user 

interfaces. Other analysed platforms only support direct HTML usage. 

According to our analysis, Jabberwocky represents a highly complete CS 

platform compared to the others. It adds several features to CrowdForge, such as: 

 Worker profiles and social networks; 

 Abstraction over human and machine computational units; 

 Multiple worker sources (e.g. social networks, external CS communities). 

 

Table 1 - Comparison of different CS systems. 

System Relies on 
Complex 

Tasks 

Task Meth-

ods 

Worker As-

sessment 
Aggregation 

MTurk Self No 
Task Tem-

plates 

Qualification 

Tests 
Manual 

CrowdFlower Several No 
Task Tem-

plates 
Gold Units Yes 

ShortTask Self No 
Task Tem-

plates 
Manual Manual 

MicroWorkers Self No 
Task Tem-

plates 
Manual N/A 

CloudCrowd Self - - 

Credential 

Tests and 

Credibility 

- 

CrowdForge MTurk Workflows Map Reduce (MTurks’) Yes 

Jabberwocky Self/Several Workflows Map Reduce User Profiles Yes 

Turkomatic MTurk Workflows 
Divide and 

Conquer 
(MTurks’) 

Yes (Work-

ers) 

Turkit MTurk Workflows 
Crash and 

Rerun 
(MTurks’) 

Yes (Work-

ers) 
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Table 2 - Different terminologies employed by different CS systems. 

Meaning MTurk CrowdFlower ShortTask CloudCrowd MWorkers 

Wrapper of 

CS data and 

tasks 

Project Job 
Task Tem-

plate 
Project 

Campaign 

or Job 

Unit of the 

task to be 

solved 

HIT Unit Task Task Task 

Assignment 

of a unit to a 

worker 

Assignment - Assignment - - 

Answer given 

to an assign-

ment 

Answer Judgement - Answer - 

Ref. unit with 

correct an-

swer 

N/A Gold Unit N/A Check Task N/A 

The employ-

ee 
Worker Worker Solver Worker Worker 

The employer Requester Requester Seeker - Employer 

Worker ex-

pertise re-

quirement  

Qualification N/A N/A Credentials N/A 

 

CloudCrowd has a rigorous and complete assessment system compared to most 

CS platforms, incorporating the benefits of both Mechanical Turks’ and Crowd-

Flowers’ assessment systems.  

Table 1 contains an overview and comparison of the analysed CS systems. 

The “relies on” column indicates if the system is able to relay the CS process to 

other systems. The “complex tasks” column describes, if available, how complex 

tasks are formed and handled. The third column, “task methodologies”, enumer-

ates different methodologies employed by the system in designing, maintaining, 

and executing tasks. The “worker assessment” column refers to how the CS sys-

tem evaluates the quality of the work performed by workers. Finally, the “aggre-
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gation” column describes, if available and applicable, automatic result aggregation 

procedures that merge the work of several workers. 

The terminology employed in the CS domain often varies from platform to 

platform. Table 2 wraps the terminology used in four different CS platforms. 

The first concept found in table 2 represents a wrapper of the whole CS 

process. It contains all the data required for the execution of the task or task work-

flow, including inputs and outputs. A task (e.g. tag an image) can have several 

units of work (e.g. the actual images to be tagged). This concept is represented in 

the second row of table 2. The following concept depicts assignments of specific 

units to workers (the ones who solve the task). For each assignment, the worker 

must submit an answer (fourth row concept). 

In some cases, for quality control purposes, units are submitted by the re-

quester with an already known correct answer. This kind of unit is present in the 

fifth row of table 2. Furthermore, the requester (the one who requires a certain 

task to be solved) can specify expertise requirements that workers must satisfy in 

order to be electable for solving the task. The terminology for this concept can be 

found in the last row of table 2. 

Ontology of Task-Oriented Systems 

Although classifications of CS systems already exist (Doan et al. 2011; Quinn and 

Bederson 2011; Yuen et al. 2011a), they often focus on dimensions that are do-

main-specific or of particular interest from a business standpoint. In this sense, a 

new systematization of these classifications is provided, integrating an analysis of 

the previously described systems. 

The presented classification, in table 3, focuses on technical and domain-

independent dimensions of systems that fit under both the CS and HC definitions. 

It is built as a poly-hierarchy of categories, meaning that a CS system can fit un-

der a number of these categories. In this sense, the classification is presented as an 

ontology. Although not considered in the context of this work, an artefact of this 

ontology can be built using, for instance, the OWL (Web Ontology Language). 

As a reference for the classification, the following dimensions for task-

oriented systems were identified: 

 Nature of collaboration (Doan et al. 2011); 

 Architecture (Doan et al. 2011); 
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 Worker selection; 

 Worker assessment and quality control; 

 Worker motivation; 

 Task creation and configuration; 

 Task management; 

 Task execution; 

 Task result aggregation. 

Nature of Collaboration 

The explicit and implicit categories present in the “nature of collaboration” di-

mension are introduced by Doan et al. (2011). In explicit CS systems the users are 

aware that they are working towards solving specific tasks. Some examples of 

explicit CS systems include Mechanical Turk, CrowdFlower and ShortTask. 

Implicit CS systems usually retrieve work behind a system with a different 

purpose. These include games such as the ESP Game (Von Ahn 2009), Tag-a-

Tune (Quinn and Bederson 2011), and Foldit (Cooper et al. 2010). ReCAPTCHA 

(Little et al. 2010) is also an example of an implicit CS system where users work 

as book and document digitizers by filling CAPTCHA (Completely Automated 

Public Turing test to tell Computers and Humans Apart) forms. 

In this classification, it is intended that the implicit and explicit categories 

are disjoint. Thus, it is not possible for one CS system to be classified as both im-

plicit and explicit. Since CS games fit under the implicit category, a game sub-

category has been included in the classification. 

Architecture 

The architecture dimension encompasses the standalone and piggyback catego-

ries, which are also introduced by Doan et al. (2011). A standalone CS system is 

independent of other CS systems. It has its own worker community and does not 

require the distribution of tasks among other systems (e.g. MTurk). 

A piggyback CS system relies on external worker communities. They usu-

ally focus on the process of building the task and distributing work between other 

CS systems. One of the best examples of such a system is CrowdFlower. 

The given definition for these two categories is not disjoint. In this sense, a 

CS system, such as Jabberwocky, fits both categories.  
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Table 3 - Classification of CS and HC systems according to different dimensions. 

Dimension Category Sub-category 

Nature of Collaboration Explicit  

Implicit Game 

Architecture Standalone  

Piggyback  

Worker Selection Community Scope Multiple Community 

Single Community 

Worker Scope Assessment Filtering 

Expertise test Filtering 

Profile (social) Filtering 

    Demographic Filtering 

Worker Assessment and 

Quality Control 

Manual  

Automatic Reference Units 

Assessment Tasks 

Worker Motivation Monetary  

Enjoyment  

Reputation  

Task Creation and Configu-

ration 

Instantiation Manual 

Templates 

UI Construction Plain Text 

HTML 

Proprietary Language 

Data Structure Plain Text 

CSV, JSON (No Schema) 

Task Management Non-Visual  

Visual Construction 

Monitoring 

Task Execution Simple  

Complex (Workflows) Crash and Rerun 

Divide and Conquer 

    Partition-Map-Reduce 

Task Result Aggregation Manual  

Automatic Voting Scheme 

Assessment-based 

Crowdsourced 



27 

Worker Selection 

When a task is published, it becomes available to a certain amount of workers. 

These workers usually belong to at least one community, and may be filtered ac-

cording to different characteristics such as their profile information, demographics 

(e.g. country of residence), or expertise. In this sense, six types of worker selec-

tion strategies that act in two different scopes (the community scope, and the 

worker scope) were identified (see table 4). 

 

Table 4 - Classification of CS systems according to the worker selection dimension. 

Category Sub-category Examples 

Community Scope Multiple Communities Jabberwocky 

Single Community MTurk, ShortTask 

Worker Scope Assessment Filtering MTurk, CloudCrowd 

Expertise Test Filtering MTurk, CloudCrowd 

Profile (Social) Filtering     

     Demographic Filtering CrowdFlower 

 

The community scope encompasses CS systems that either rely on multiple com-

munities of workers or on a single worker community. These two categories are 

disjoint. 

In the worker scope there are four categories: assessment filtering, exper-

tise test filtering, demographic filtering, and profile (social) filtering. In assess-

ment-based filtering, the task is distributed between workers that satisfy require-

ments regarding reputation and performance in previously solved tasks. Expertise 

test filtering consists of providing test tasks that assess worker expertise in a spe-

cific domain of knowledge, or in performing a specific type of task. The meas-

urement of expertise allows the enforcement of a minimum expertise value for the 

worker to be able to participate. 

Demographic filtering selects workers that satisfy certain statistical charac-

teristics of attributes such as age and country of residence. Profile (social) filtering 

represents a superset of demographic filtering. It enforces requirements regarding 

the worker personal and social profile, which may include demographic attributes. 

One example is the enforcement of a minimum or maximum value for social 

worker relationship closeness (Wasserman and Faust 1994). 
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Worker Assessment and Quality Control 

Assessing the performance of workers in specific tasks or in general is an im-

portant dimension of CS. Worker assessment can be employed in different phases 

and in other dimensions of the CS process such as in worker selection and task 

result aggregation, often having a significant impact on the quality of the final 

task results. 

According to the current state of the art, assessment strategies are either 

manual (performed by the requester) or automatic (performed by the CS system). 

 

Table 5 - Classification of CS systems according to the worker assessment and quality con-

trol dimension. 

Category Sub-category Examples 

Manual   ShortTask, MicroWorkers 

Automatic Reference Units CrowdFlower 

Assessment Tasks Turkomatic, CrowdForge 

 

As presented in table 5, two automatic assessment strategies were identified: ref-

erence units, and assessment tasks. An assessment through reference units consists 

of using test tasks with known answers to evaluate worker performance. Another 

strategy is to crowdsource the assessment of the answers to other workers through 

an assessment task. 

Worker Motivation 

For users to participate and remain as workers, they require some kind of motiva-

tion, usually given by the CS system or the requester.  

Most HC and CS systems provide small monetary rewards. Others, how-

ever, use different means of motivating workers. While in CS games the motiva-

tional aspect is usually recreation and enjoyment, reputation has also been proven 

a viable source of motivation (Porter 2008). 

In this sense, three worker motivation strategies are identified as the fol-

lowing non-disjoint categories: 

 Monetary (e.g. MTurk and CrowdFlower); 

 Enjoyment (e.g. Tag-a-Tune and the ESP Game); 

 Reputation (not so widely exploited since workers are often anonymous). 
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Task Creation and Configuration 

The task creation and configuration dimension encloses all the special characteris-

tics of the task creation and configuration process. So far, it mainly consists of the 

definition of the User Interface (UI), upload of data, and configuration of the task 

request through parameters such as monetary reward per unit and target worker 

residence countries.  

Referring to this dimension, a classification is presented in table 6 that 

takes into account how the task instance is created, how the construction of the 

worker UI is performed, and which data structures are consumed by the CS sys-

tem. None of the included categories and sub-categories are disjoint. 

Most CS systems allow both the manual and template-based instantiation 

of the task. Also, the CSV format is commonly used in CS systems to allow re-

questers to upload task data. 

 

Table 6 - Classification of CS systems according to the task creation and configuration di-

mension. 

Category Sub-category Examples 

Instantiation Templates MTurk, ShortTask 

Manual CrowdFlower, MTurk 

UI Construction Proprietary Language CrowdFlower 

HTML MTurk 

Plain Text MicroWorkers 

Data Structure CSV, JSON (No Schema) CrowdFlower, MTurk 

Plain Text MicroWorkers 

 

Task Management 

So far, the management of tasks has been performed through simple, mostly tex-

tual, web UI. With the advent of several complex task CS systems, however, a 

need for visually building and managing task workflows has emerged. 

Turkomatic is one of the first CS systems introducing task visualization by 

presenting a complex task construction environment where the requester is able to 

visually build a workflow of tasks. More recently, CrowdWeaver takes complex 
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task visualization a step further by providing an environment not only for visually 

building workflows of tasks but also for monitoring their progress. 

Taking into account the current state of the art, four categories for the task 

management dimension are presented in table 7. 

 

Table 7 - Classification of CS systems according to the task management dimension. 

Category Sub-category Examples 

Non-Visual   CrowdFlower, MTurk 

Visual Construction CrowdWeaver, Turkomatic 

Monitoring CrowdWeaver 

 

In this dimension, only the non-visual and visual categories are disjoint. The con-

struction category refers to CS systems that provide a visual UI for building tasks. 

The monitoring category, on the other hand, refers to CS systems that allow the 

visual monitoring of the task progress in real time. 

Task Execution 

The task execution dimension refers to how the task is structured and processed 

by the CS system. Under this dimension, a task can either be simple or complex (a 

workflow of simple tasks). For complex tasks, several strategies are employed. 

These are present in the classification with the sub-categories shown in table 8. 

 

Table 8 - Classification of CS systems according to the task execution dimension. 

Category Sub-category Examples 

Simple   CrowdFlower, MTurk 

Complex Crash and Rerun Turkit 

Divide and Conquer Turkomatic 

    Partition-Map-Reduce CrowdForge, Jabberwocky 

 

The crash and rerun category includes systems that allow modifying and restarting 

the execution of the workflow without additional CS costs. Divide and conquer 

approaches try to split the task into smaller units before requesting a final solu-

tion. Partition-map-reduce are a specific case of divide and conquer approaches 

that include a result aggregation phase. 
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Task Result Aggregation 

Often, the same task is solved by multiple workers, leading to several solutions 

for the same task. Despite providing redundancy, it requires the aggregation and 

processing of the resulting data in order to reach a final and unique solution. 

The aggregation of results can be either manual (performed by the re-

quester of the task) or performed automatically using an aggregation strategy. 

Commonly used aggregation strategies include the application of voting schemes 

and filtering through worker assessment. CrowdFlower employs both of these 

aggregation strategies. It uses a majority voting scheme to select results that are 

most likely to be correct, excluding workers with poor assessment values (those 

that gave wrong answers to check tasks). 

The results of the algorithms employed during worker selection can also 

provide important data for result aggregation. Both CloudCrowd and Mechanical 

Turk implement mechanisms to assess expertise (qualifications or credentials) in 

order to filter workers. Giving more prominence to the answers of workers with 

higher degrees of expertise could lead to better results.  

Another approach is to crowdsource the result aggregation as an aggrega-

tion task. This strategy is employed in systems that use the partition-map-reduce 

task execution strategy. 

Table 9 presents the categories identified for the task result aggregation 

dimension. 

 

Table 9 - Classification of CS systems according to the task result aggregation dimension. 

Category Sub-category Examples 

Manual   ShortTask 

Automatic Voting Scheme CrowdFlower 

Assessment-based CrowdFlower, CloudCrowd 

Crowdsourced CrowdForge, Jabberwocky 

 

Challenges 

Since the appearance of the first CS systems for micro-tasks, many more have 

emerged. Their continuous use has led to several experiments and studies that of-

ten focus on user motivation and quality control (Yuen et al. 2011b). 
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User motivation has been addressed in several ways, from providing en-

joyment and relying on altruism, to giving monetary rewards (Faridani et al. 

2011). The latter has been the subject of some criticism, due to the creation of 

cheap labour marketplaces (Harris 2011). In the specific case of task CS systems, 

the current monetary rewards are not sufficient to be a primary source of income, 

and often they are not enough to serve as a motivator (Mason and Watts 2010; 

Paolacci et al. 2010). In these cases, workers actually participate out of altruism, 

curiosity, or simply to keep themselves busy. Still, motivating and retaining work-

ers over time remains a challenge for any CS system. 

Quality control has been studied in different application domains and ad-

dressed differently by a variety of CS systems. In general, assessment methods are 

employed either before (during the worker selection step) or after (during the 

worker assessment step) the participation of the worker. Among the current as-

sessment strategies are expertise tests in certain domains, asking questions for 

which the answer is known and analysing performance in previous tasks. 

Although several quality control strategies already exist, the advent of CS of 

complex tasks has brought new challenges to different dimensions of the CS pro-

cess, including specification, flow control, quality control, and visualization.  

In the specific case of quality control, and due to the presence of a micro-task 

workflow structure, a deviation or error in one task can accumulate with those of 

the following tasks.  

Besides quality control, the flow control assumes special relevance. In 

fact, the CS of complex tasks establishes requirements regarding worker selection 

that are often discarded in simple micro-task CS systems. One of these require-

ments is worker identity. The fact that most CS systems regard the micro-task as 

the top-level unit of work, leads to loss of identity information from one micro-

task to the other. This can easily become a challenge when the worker, as an iden-

tifiable individual, is required to participate in different steps of the task work-

flow. 

Another challenge when dealing with complex tasks is the aggregation and 

visualization of results.  At some point, since multiple micro-tasks are involved in 

a workflow, tracing a specific result and asserting the causes and facts that led to 

it becomes a necessity. Currently, both the results presented by most CS systems 

and the input requested from workers are poorly structured and, in some cases, in 
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natural language. Since the output of a micro-task might be the input given to the 

execution of a computer algorithm micro-task, both the specifications (structure) 

of the task and the task domain of knowledge must be understandable and inter-

pretable by both humans and machines. Furthermore, there is a necessity for a 

specification that is able to capture iterative steps formed by complex flow condi-

tions. 

Enforcing structured machine-readable data also facilitates the implemen-

tation of strategies for tracing workflow results. Still, special care is needed so 

that such a structure does not increase the complexity and cumbersome nature of 

solving tasks from the worker’s perspective. 

Overall, the following main challenges were identified: 

 Specification of complex tasks, namely: 

o Iterative, interactive and incremental tasks; 

o Support for complex flow control conditions, both internal and ex-

ternal; 

o Structuring the task specification, including its domain knowledge, 

in a way understandable and interpretable by both workers and ma-

chines; 

 Specification of the human-machine interaction, namely: 

o Specifying worker selection restrictions for different phases of the 

workflow; 

o Identifying workers across the workflow in order to permit iterative 

workflows; 

o Tracing results and obtaining and providing justifications; 

 Control quality in complex task workflows:  

o Assessing and reducing the impact of low quality answers across 

the workflow; 

o Using (social) profile information to assess worker’s expertise and 

relevance, and to enhance context; 

 Visualization and reporting. 

Possible Directions 

It is curious to notice that while multi-agent systems usually strive to create com-

puter entities that mimic human behaviour, HC and CS strives for the extraction 
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of computational power from humans. So far, this has been done by creating sys-

tems that structure the task so humans can execute it, in similar ways to machines. 

In a sense, the one-way computer-human bridge built over years and years of re-

search on multi-agent systems might as well present the foundations required for 

building another bridge in the opposite direction. 

In particular, a structured and semantically-enriched representation of the 

micro-task workflows and their data is required to allow a better integration of 

human computation and machine computation efforts. Ontologies as a formal rep-

resentation mechanism are currently “the best answer to the demand for intelligent 

systems that operate closer to the human conceptual level” (Obrst et al. 2003). 

While providing structure and semantics, ontologies can also leverage: 

 Template re-use and extensibility; 

 Semi-automatic generation of worker interfaces; 

 Contextual information in complex workflows (tackling flow and quality 

control); 

 Justifications for results (tackling result traceability in flow control); 

 Semantics for further automatic processing of data (tackling complex task 

specification of the task and the task domain). 

 

Detailed representations (ontologies) of micro-tasks and their dependencies 

through the specification of their domain (input, output and context) can be ana-

lysed to present relevant contextual information to workers and detailed structured 

reports to requesters (Luz et al. 2014). Although this is not particularly interesting 

in single task CS systems, it is relevant when dealing with complex task work-

flows and their input/output dependencies. 

Another dimension of CS micro-task systems in which further research can 

potentially lead to new CS solutions is worker selection and, in particular, profile 

(social) filtering. The application of worker filters according to social network 

connections and data helps to tackle some of the previously identified quality con-

trol challenges, and may lead to interesting results in specific types of tasks where 

social network properties such as homophily (the tendency to bond with similar 

others) and centrality (Wasserman and Faust 1994) usually play an important role. 

This is the case for personal or private tasks such as selecting a good local restau-
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rant or identifying acquaintances in old family photographs (a similar process to 

tagging photographs, which is often found in social networks). 

Micro-task CS is a research field with a wide variety of application do-

mains. Also, given the complexity of the dimensions involved in the CS process, 

there is room for many different approaches. In this sense, the proposed ideas and 

possible directions are but a fraction of the future research and development pos-

sibilities. 

Conclusions 

Over the last decade, HC and CS have been merged to create multiple systems for 

problem solving on a wide scale. These systems are starting to facilitate the man-

computer symbiosis envisioned by Licklider (1960) in the 1960s. 

The increasing popularity of CS has led to a variety of commercial and 

non-commercial applications in different domains. Among these applications, a 

small set of CS platforms oriented towards problem (task) solving has emerged. 

These platforms regard the problem (or job) as sets of micro-tasks that can be 

solved redundantly in one step by multiple users. In complex jobs where a work-

flow of micro-tasks is required, new challenges emerge. This new trend in CS has 

led to some interesting workflow oriented systems such as CrowdForge and Jab-

berwocky. 

Overall, task-oriented CS systems share many commonalities. The pre-

sented systematization of the current state of the art in task-oriented CS systems, 

which includes a classification of systems, aids the quick identification of these 

commonalities and provides an overview of the current challenges and possible 

research directions. 

Misunderstanding is an issue that might often emerge due to the use of dif-

ferent terminologies by task-oriented CS systems. In this sense, a mapping of the 

different terminologies employed in CS is provided, along with the relationships 

between each term.  

Although several task-oriented CS systems have emerged in a short period 

of time, the employed approaches are often the same. In fact, a generalization of 

the CS process (for simple and complex tasks) using a common/mapped terminol-

ogy is proposed. 
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Finally, a focus is given to the identification and systematization of chal-

lenges and possible approaches, especially concerning complex tasks. This shows 

that there is still a great deal of room for further research and development. 
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