118 research outputs found

    Safe selection of genetically manipulated human primary keratinocytes with very high growth potential using CD24

    Get PDF
    Stable and safe corrective gene transfer in stem keratinocytes is necessary for ensuring success in cutaneous gene therapy. There have been numerous encouraging preclinical approaches to cutaneous gene therapy in the past decade, but it is only recently that a human volunteer suffering from junctional epidermolysis bullosa could be successfully grafted using his own non-selected, genetically corrected epidermal keratinocytes. However, ex vivo correction of cancer-prone genetic disorders necessitates a totally pure population of stably transduced stem keratinocytes for grafting. Antibiotic selection is not compatible with the need for full respect for natural cell fate potential and avoidance of immunogenic response in vivo. In order to surmount these problems, we developed a strategy for selecting genetically modified stem cell keratinocytes. Driving ectopic expression of CD24 (a marker of post-mitotic keratinocytes) at the surface of clonogenic keratinocytes permitted their full selection. Engineered keratinocytes expressing CD24 and the green fluorescent protein (GFP) tracer gene were shown to retain their original growth and differentiation potentials both in vitro and in vivo over 300 generations. Also, they did not exhibit signs of genetic instability. Using ectopic expression of CD24 as a selective marker of genetically modified human epidermal stem cells appears to be the first realistic approach to safe cutaneous gene therapy in cancer-prone disease conditions.We are indebted to Françoise Bernerd (L'Oréal Advanced Research, Clichy, France) and Mathilde Frechet (Centre National de la Recherche Scientifique (CNRS), FRE2939, Villejuif, France) for their expert help with organotypic skin cultures. We thank Yann Lecluse (Institut Gustave Roussy, Villejuif, France) for his expert help with flow cytometry. Françoise Viala (CNRS, Toulouse, France) is gratefully acknowledged for excellent artwork contribution. We thank Claire Marionnet (L'Oréal Advanced Research, Clichy, France) for kindly helping us with statistical analysis and Mandy Schwint for kindly editing the manuscript. Gim Meneguzzi (Institut National de la Santé et de la Recherche Médicale, U634, Nice, France) is acknowledged for the generous gift of the GB3 anti-laminin 5 antibody. James R. Rheinwald and Howard Green (Harvard, Women';s Hospital, Boston, MA) are gratefully acknowledged for the generous gift of 3T3-J2 cells. We thank the Production and Control department of Genethon which is supported by the Association Française contre les Myopathie, within the Gene Vector Production Network (http://www.gvpn.org). This work was supported by funds from CNRS and Centro de Investigación Biomedica en Red de Enfermedades Raras, Spain, and grants SAF-2004-07717 to M.D.R. and FIS OI051577 to F.L. T.M. gratefully acknowledges funding from the Association pour la Recherche sur le Cancer (No. 3590), the Fondation de l'Avenir, the Société Française de Dermatologie, and the Association Française contre les Myopathies

    Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis

    Get PDF
    Photo-unstable chemicals sometimes behave as phototoxins in skin, inducing untoward clinical side-effects when exposed to sunlight. Some drugs, such as psoralens or fluoroquinolones, can damage genomic DNA, thus increasing the risk of photocarcinogenesis. Here, lomefloxacin, an antibiotic from the fluoroquinolone family known to be involved in skin tumor development in photoexposed mice, was studied using normal human skin cells in culture: fibroblasts, keratinocytes, and Caucasian melanocytes. When treated cells were exposed to simulated solar ultraviolet A (320–400 nm), lomefloxacin induced damage such as strand breaks and pyrimidine dimers in genomic DNA. Lomefloxacin also triggered various stress responses: heme-oxygenase-1 expression in fibroblasts, changes in p53 status as shown by the accumulation of p53 and p21 proteins or the induction of MDM2 and GADD45 genes, and stimulation of melanogenesis by increasing the tyrosinase activity in melanocytes. Lomefloxacin could also lead to apoptosis in keratinocytes exposed to ultraviolet A: caspase-3 was activated and FAS-L gene was induced. Moreover, keratinocytes were shown to be the most sensitive cell type to lomefloxacin phototoxic effects, in spite of the well-established effectiveness of their antioxidant equipment. These data show that the phototoxicity of a given drug can be driven by different mechanisms and that its biologic impact varies according to cell type

    DNA Polymerase η Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination

    Get PDF
    Base substitutions, deletions, and duplications are observed at the immunoglobulin locus in DNA sequences involved in class switch recombination (CSR). These mutations are dependent upon activation-induced cytidine deaminase (AID) and present all the characteristics of the ones observed during V gene somatic hypermutation, implying that they could be generated by the same mutational complex. It has been proposed, based on the V gene mutation pattern of patients with the cancer-prone xeroderma pigmentosum variant (XP-V) syndrome who are deficient in DNA polymerase η (pol η), that this enzyme could be responsible for a large part of the mutations occurring on A/T bases. Here we show, by analyzing switched memory B cells from two XP-V patients, that pol η is also an A/T mutator during CSR, in both the switch region of tandem repeats as well as upstream of it, thus suggesting that the same error-prone translesional polymerases are involved, together with AID, in both processes

    Predictors of inappropriate hospital days in a department of internal medicine

    Get PDF
    Background This study aimed to identify predictors of inappropriate hospital days in a deparUnent of internal medicine, as a basis for quality improvement interventions. Methods The appropriateness of 5665 hospital days contributed by 500 patients admitted to the Department of Internal Medicine, Geneva University Hospitals, Switzerland, was assessed by means of the Appropriateness Evaluation Protocol. Predictor variables included patient's age and sex, manner of admission and discharge, and characteristics of hospital days (weekend, holiday, sequence). Results Overall, 15% of hospital admissions and 28% of hospital days were rated as inappropriate. In multivariate models, inappropriate hospital days were more frequent among patients whose admission was inappropriate (odds ratio [OR] = 5.3, 95% CI: 3.1-8.4) and among older patients (80-95 years: OR = 3.6. 95% CI: 1.7-7.0, versus <50 years). The likelihood of inappropriateness also increased with each subsequent hospital day, culminating on the day of discharge, regardless of the total length of stay. Conclusions This study identified both the admission and the discharge processes as important sources of inappropriate hospital use in a department of internal medicine. The oldest patients were also at high risk of remaining in the hospital inappropriately. Surprisingly, long hospital stays did not generate a higher proportion of inappropriate days than short hospital stays. This information proved useful in developing interventions to improve the hospitalization proces

    Correction by the ercc2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells

    Get PDF
    Trichothiodystrophy (TTD) is a rare genetic disease with heterogeneous clinical features associated with specific deficiencies in nucleotide excision repair. Patients have brittle hair due to a reduced content of cysteine-rich matrix proteins. About 50% of the cases reported in the literature are photosensitive. In these patients an altered cellular response to UV, due to a specific deficiency in nucleotide excision repair, has been observed. The majority of repairdefective TTD patients have been assigned by complementation analysis to group D of xeroderma pigmentosum (XP). Recently, the human excision repair gene ERCC2 has been shown to correct the UV sensitivity of XP-D fibroblasts. In this work we describe the effect of ERCC2 on the DNA repair deficient phenotype of XP-D and on two repair-defective TTD cell strains (TTD1VI and TTD2VI) assigned by complementation analysis to group D of XP. ERCC2 cDNA, cloned into a mammalian expression vector, was introduced into TTD and XP fibroblasts via DNA-mediated transfection or microneedle injection. UV sensitivity and cellular DNA repair properties, including unscheduled DNA synthesis and reactivation of a UVirradiated plasmid containing the chloramphenicol acetyltransferase reporter gene (pRSVCat), were corrected to wild-type levels in both TTD and XP-D cells. These data show that a functional ERCC2 gene is sufficient to reestablish a wild-type DNA repair phenotype in TTD1VI and TTD2VI cells, confirming the genetic relationship between TTD and XP-D. Furthermore, our findings suggest that mutations at the ERCC2 locus are responsible for causing a similar phenotype in TTD and XP-D cells in response to UV irradiation, but produce quite different clinical symptorns.</p

    Both XPA and DNA polymerase eta are necessary for the repair of doxorubicin-induced DNA lesions

    Get PDF
    Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. in fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)USP-COFECUB (São Paulo, Brazil)Univ São Paulo, Dept Microbiol, Inst Biomed Sci, São Paulo, BrazilUniv Paris Sud, Inst Gustave Roussy, Ctr Natl Rech Sci, UMR8200, Villejuif, FranceFed Univ São Paulo UNIFESP, Dept Biol Sci, Diadema, SP, BrazilUniv Fed Rio Grande do Sul, Ctr Biotechnol, Dept Biophys, Porto Alegre, RS, BrazilFed Univ Hlth Sci Porto Alegre UFCSPA, Dept Basic Hlth Sci, Porto Alegre, RS, BrazilFed Univ São Paulo UNIFESP, Dept Biol Sci, Diadema, SP, BrazilWeb of Scienc

    Preclinical corrective gene transfer in Xeroderma pigmentosum human skin stem cells

    Get PDF
    Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (> 10(40) cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients.F.L. was supported in part by grants PI081054 from ISCIII and PBIO-0306-2006 from Comunidad de Madrid (CAM). M.D.R. was supported by grant SAF2010-16976 from MICINN. The authors declared no conflict of interest

    A prognostic signature of defective p53-dependent G1 checkpoint function in melanoma cell lines: A signature of defective p53 function in melanoma

    Get PDF
    Melanoma cell lines and normal human melanocytes were assayed for p53-dependent G1 checkpoint response to ionizing radiation-induced DNA damage. Sixty six percent of melanoma cell lines displayed a defective G1 checkpoint. Checkpoint function was correlated with sensitivity to ionizing radiation with checkpoint-defective lines being radio-resistant. Microarray analysis identified 316 probes whose expression was correlated with G1 checkpoint function in melanoma lines (P≤0.007) including p53 transactivation targets CDKN1A, DDB2 and RRM2B. The 316 probe list predicted G1 checkpoint function of the melanoma lines with 86% accuracy using a binary analysis and 91% accuracy using a continuous analysis. When applied to microarray data from primary melanomas, the 316 probe list was prognostic of four year distant metastases-free survival. Thus, p53 function, radio-sensitivity and metastatic spread may be estimated in melanomas from a signature of gene expression

    Transcriptional Mutagenesis Induced by 8-Oxoguanine in Mammalian Cells

    Get PDF
    Most of the somatic cells of adult metazoans, including mammals, do not undergo continuous cycles of replication. Instead, they are quiescent and devote most of their metabolic activity to gene expression. The mutagenic consequences of exposure to DNA–damaging agents are well documented, but less is known about the impact of DNA lesions on transcription. To investigate this impact, we developed a luciferase-based expression system. This system consists of two types of construct composed of a DNA template containing an 8-oxoguanine, paired either with a thymine or a cytosine, placed at defined positions along the transcribed strand of the reporter gene. Analyses of luciferase gene expression from the two types of construct showed that efficient but error-prone transcriptional bypass of 8-oxoguanine occurred in vivo, and that this lesion was not repaired by the transcription-coupled repair machinery in mammalian cells. The analysis of luciferase activity expressed from 8OG:T-containing constructs indicated that the magnitude of erroneous transcription events involving 8-oxoguanine depended on the sequence contexts surrounding the lesion. Additionally, sequencing of the transcript population expressed from these constructs showed that RNA polymerase II mostly inserted an adenine opposite to 8-oxoguanine. Analysis of luciferase expression from 8OG:C-containing constructs showed that the generated aberrant mRNAs led to the production of mutant proteins with the potential to induce a long-term phenotypical change. These findings reveal that erroneous transcription over DNA lesions may induce phenotypical changes with the potential to alter the fate of non-replicating cells
    • …
    corecore